首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

图解NumPy,这是理解数组最形象的一份教程了

数据表示 考虑所有需要处理和构建模型所需的数据类型(电子表格、图像、音频等),其中很多都适合在 n 维数组中表示: 表格和电子表格 电子表格或值表是二维矩阵。...电子表格中的每个工作表都可以是它自己的变量。python 中最流行的抽象是 pandas 数据帧,它实际上使用了 NumPy 并在其之上构建。 ? 音频和时间序列 音频文件是样本的一维数组。...这意味着如果你有一个 10 秒的 CD 质量 WAVE 文件,你可以将它加载到长度为 10 * 44,100 = 441,000 的 NumPy 数组中。...如果想要提取音频的第一秒,只需将文件加载到 audio 的 NumPy 数组中,然后获取 audio[:44100]。 以下是一段音频文件: ? 时间序列数据也是如此(如股票价格随时间变化)。...下图是一个图像文件的片段: ? 如果图像是彩色的,则每个像素由三个数字表示——红色、绿色和蓝色。在这种情况下,我们需要一个三维数组(因为每个单元格只能包含一个数字)。

2K20

图解NumPy,这是理解数组最形象的一份教程了

数据表示 考虑所有需要处理和构建模型所需的数据类型(电子表格、图像、音频等),其中很多都适合在 n 维数组中表示: 表格和电子表格 电子表格或值表是二维矩阵。...电子表格中的每个工作表都可以是它自己的变量。python 中最流行的抽象是 pandas 数据帧,它实际上使用了 NumPy 并在其之上构建。 ? 音频和时间序列 音频文件是样本的一维数组。...这意味着如果你有一个 10 秒的 CD 质量 WAVE 文件,你可以将它加载到长度为 10 * 44,100 = 441,000 的 NumPy 数组中。...如果想要提取音频的第一秒,只需将文件加载到 audio 的 NumPy 数组中,然后获取 audio[:44100]。 以下是一段音频文件: ? 时间序列数据也是如此(如股票价格随时间变化)。...下图是一个图像文件的片段: ? 如果图像是彩色的,则每个像素由三个数字表示——红色、绿色和蓝色。在这种情况下,我们需要一个三维数组(因为每个单元格只能包含一个数字)。

1.8K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图解NumPy,别告诉我你还看不懂!

    数据表示 考虑所有需要处理和构建模型所需的数据类型(电子表格、图像、音频等),其中很多都适合在 n 维数组中表示: 表格和电子表格 电子表格或值表是二维矩阵。...电子表格中的每个工作表都可以是它自己的变量。python 中最流行的抽象是 pandas 数据帧,它实际上使用了 NumPy 并在其之上构建。 ? 音频和时间序列 音频文件是样本的一维数组。...这意味着如果你有一个 10 秒的 CD 质量 WAVE 文件,你可以将它加载到长度为 10 * 44,100 = 441,000 的 NumPy 数组中。...如果想要提取音频的第一秒,只需将文件加载到 audio 的 NumPy 数组中,然后获取 audio[:44100]。 以下是一段音频文件: ? 时间序列数据也是如此(如股票价格随时间变化)。...下图是一个图像文件的片段: ? 如果图像是彩色的,则每个像素由三个数字表示——红色、绿色和蓝色。在这种情况下,我们需要一个三维数组(因为每个单元格只能包含一个数字)。

    2.1K20

    图解NumPy,这是理解数组最形象的一份教程了

    数据表示 考虑所有需要处理和构建模型所需的数据类型(电子表格、图像、音频等),其中很多都适合在 n 维数组中表示: 表格和电子表格 电子表格或值表是二维矩阵。...电子表格中的每个工作表都可以是它自己的变量。python 中最流行的抽象是 pandas 数据帧,它实际上使用了 NumPy 并在其之上构建。 ? 音频和时间序列 音频文件是样本的一维数组。...这意味着如果你有一个 10 秒的 CD 质量 WAVE 文件,你可以将它加载到长度为 10 * 44,100 = 441,000 的 NumPy 数组中。...如果想要提取音频的第一秒,只需将文件加载到 audio 的 NumPy 数组中,然后获取 audio[:44100]。 以下是一段音频文件: ? 时间序列数据也是如此(如股票价格随时间变化)。...下图是一个图像文件的片段: ? 如果图像是彩色的,则每个像素由三个数字表示——红色、绿色和蓝色。在这种情况下,我们需要一个三维数组(因为每个单元格只能包含一个数字)。

    1.8K22

    【图解 NumPy】最形象的教程

    数据表示 考虑所有需要处理和构建模型所需的数据类型(电子表格、图像、音频等),其中很多都适合在 n 维数组中表示: 表格和电子表格 电子表格或值表是二维矩阵。...电子表格中的每个工作表都可以是它自己的变量。python 中最流行的抽象是 pandas 数据帧,它实际上使用了 NumPy 并在其之上构建。 ? 音频和时间序列 音频文件是样本的一维数组。...这意味着如果你有一个 10 秒的 CD 质量 WAVE 文件,你可以将它加载到长度为 10 * 44,100 = 441,000 的 NumPy 数组中。...如果想要提取音频的第一秒,只需将文件加载到 audio 的 NumPy 数组中,然后获取 audio[:44100]。 以下是一段音频文件: ? 时间序列数据也是如此(如股票价格随时间变化)。...下图是一个图像文件的片段: ? 如果图像是彩色的,则每个像素由三个数字表示——红色、绿色和蓝色。在这种情况下,我们需要一个三维数组(因为每个单元格只能包含一个数字)。

    2.5K31

    使用Python将多个Excel文件合并到一个主电子表格中

    标签:Python与Excel,pandas 本文展示如何使用Python将多个Excel文件合并到一个主电子表格中。假设你有几十个具有相同数据字段的Excel文件,需要从这些文件中聚合工作表。...工作流程 要解决此问题,我们需要遵循以下工作流程: 1.识别我们需要合并的文件。 2.从文件中获取数据。 3.将数据从步骤2移动到主数据集(我们称之为“数据框架”)。...我们使用这个库将Excel数据加载到Python中,操作数据,并重新创建主电子表格。 我们将从导入这两个库开始,然后查找指定目录中的所有文件名。...注意,存在非Excel文件,我们不想打开这些文件,因此要处理这些文件。 将多个Excel文件合并到一个电子表格中 接下来,我们创建一个空数据框架df,用于存储主电子表格的数据。...2.如果是,则读取文件内容(数据),并将其追加/添加到名为df的主数据框架变量中。 3.将主数据框架保存到Excel电子表格中。

    5.7K20

    Python与Excel协同应用初学者指南

    ,除非电子表格中的数据是图像的像素。...还可以在代码中给出该文件夹的绝对路径,而不是更改计划编写Python代码的目录。绝对路径将确保无论在哪里编写Python代码,它都能够获取数据。...现在,终于可以开始安装和导入读取要加载到电子表格数据中的包了。...,即标题(cols)和行(txt); 4.接下来,有一个for循环,它将迭代数据并将所有值填充到文件中:对于从0到4的每个元素,都要逐行填充值;指定一个row元素,该元素在每次循环增量时都会转到下一行;...用pyexcel写入文件 就像使用这个软件包可以轻松地将数据加载到数组中一样,也可以轻松地将数组导出回电子表格。

    17.4K20

    哇塞,Python读取多个Excel文件竟然如此简单

    方法1:从文件夹获取文件——PowerQuery样式 Excel Power Query具有“从文件夹获取数据”功能,允许我们加载特定文件夹中所有文件。我们可以用Python轻松地完成这项工作。...一旦有了文件名列表,我们就可以遍历它们并将数据加载到Python中。...图1 我们的工作文件夹包含多种文件类型(Word、Excel、图像和Exe文件,还有文件夹),但是file.endswith('.xlsx')确保我们只将Excel文件读入Python。...图2 可能你会非常喜欢这种方法,因为: 可以在熟悉的环境(电子表格)中组织和存储信息(文件名、链接等)。 如果我需要更新或添加要读取的新文件,只需要更新这个输入文件,无需更改编码。...2.是否所有文件都位于同一文件夹中? 如果文件位于不同的文件夹中,则使用Excel输入文件来存储文件路径更有意义。

    3.4K20

    还在为选择办公软件而烦恼吗?不妨试试ONLYofficeV8.0

    比较文档后合并修改并将其保存为原文档的新版本 8.扩展编辑功能 通过一系列第三方插件扩展您的在线编辑功能。插入YouTube视频、添加特殊符号、翻译任意单词或句子,并在文档中编辑图像等。...打开、查看和编辑.xlsx、.xls、.ods和.csv文件,并将电子表格另存为PDF。 2.轻松实现精准计算 使用400多个函数和公式并利用特殊的语法提示,实现快速及准确的结果。...浏览版本历史,恢复任何以前的文件版本。 6.保护用户创建的电子表格 为整个电子表格、工作簿或单独的工作表设置密码。隐藏公式以保持其私密性。锁定单元格、形状和文本。允许指定用户编辑数据范围。...路径: 开始窗口 -> 连接到云 -> Moodle 5.用密码保护 PDF 文件 在 ONLYOFFICE 桌面编辑器的更新版本中,用户现在可以更安全地处理 PDF 文件。...在设置中选择“添加本地主题”后,会打开一个新的系统对话框,可以选择新主题作为 JSON 文件。所选主题将被复制到应用程序的用户文件夹中。

    18910

    如何通过7个简单步骤构建智能物联网网关

    注意:在开始之前,您需要确保在网关的 Downloads 文件夹中有 Red Hat JBoss Fuse 6.2.1 。您可以从 Red Hat Customer Portal 下载它。.../runRoutingService.sh 我们可以通过登录到 JBOSS Fuse 管理控制台来验证 Camel 路由已经部署好(请参阅详细信息)。...该规则系统能够从电子表格中读取并按照上述语法将其编译为规则。在本实验中,提供了一个示例的业务规则电子表格,可用于创建新规则。 此表中的列所代表含义如下: Alerting Rule:规则的名称。...注意:在第二条规则 Payload 列中,在“61”和“100”之间添加一个空格。 注意:以 MS Excel 格式保存电子表格。 业务规则服务的详细信息在这里。...业务规则服务将从队列中获取转换后的消息,并将其放入另一个 AMQP 消息队列中,但前提是它满足业务规则条件。

    3.7K60

    Google earth engine——导入表数据

    (有关使用代码编辑器或 CLI导入栅格的详细信息,请参阅导入栅格数据。)您上传的资产最初是私有的,但可以按照共享资产部分中的说明进行共享。...或者,可以在电子表格应用程序中定义代表点位置的 x 和 y 坐标的两列,并以 CSV 格式与任何其他变量一起导出。 在上传对话框的高级选项部分,查看和更改默认设置。...通过将光标悬停在参数名称后面的问号符号上,获取有关每个参数的信息。 除非另有说明,Earth Engine 将尝试检测主要几何列并假定数据投影为 WGS84。...在电子表格应用程序中准备表格时,这是一个重要的考虑因素,其中通常将缺失数据表示为 NA、Null、None、--等。在缺失数据的情况下,将“单元格”留空。...将表资产加载到您的脚本中 要从FeatureCollection表资产创建脚本,请按照管理资产 页面中的说明导入它。

    34110

    掌握NumPy,玩转数据操作

    NumPy数组的属性T可用于获取矩阵的转置。 在较为复杂的用例中,你可能会发现自己需要改变某个矩阵的维度。...用NumPy表示日常数据 日常接触到的数据类型,如电子表格,图像,音频......等,如何表示呢?Numpy可以解决这个问题。 表和电子表格 电子表格或数据表都是二维矩阵。...电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 音频和时间序列 音频文件是一维样本数组。...这意味着如果你有一个10秒的CD质量的WAVE文件,你可以将它加载到长度为10 * 44,100 = 441,000个样本的NumPy数组中。想要提取音频的第一秒?...只需将文件加载到我们称之为audio的NumPy数组中,然后截取audio[:44100]。 以下是一段音频文件: 时间序列数据也是如此(例如,股票价格随时间变化的序列)。

    1.6K21

    NumPy使用图解教程「建议收藏」

    NumPy数组的属性T可用于获取矩阵的转置。 在较为复杂的用例中,你可能会发现自己需要改变某个矩阵的维度。...用NumPy表示日常数据 日常接触到的数据类型,如电子表格,图像,音频……等,如何表示呢?Numpy可以解决这个问题。 表和电子表格 电子表格或数据表都是二维矩阵。...电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 音频和时间序列 音频文件是一维样本数组。...这意味着如果你有一个10秒的CD质量的WAVE文件,你可以将它加载到长度为10 * 44,100 = 441,000个样本的NumPy数组中。想要提取音频的第一秒?...只需将文件加载到我们称之为audio的NumPy数组中,然后截取audio[:44100]。 以下是一段音频文件: 时间序列数据也是如此(例如,股票价格随时间变化的序列)。

    2.9K30

    一键获取新技能,玩转NumPy数据操作!

    NumPy数组的属性T可用于获取矩阵的转置。 ? 在较为复杂的用例中,你可能会发现自己需要改变某个矩阵的维度。...电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 ? 音频和时间序列 音频文件是一维样本数组。...这意味着如果你有一个10秒的CD质量的WAVE文件,你可以将它加载到长度为10 * 44,100 = 441,000个样本的NumPy数组中。想要提取音频的第一秒?...只需将文件加载到我们称之为audio的NumPy数组中,然后截取audio[:44100]。 以下是一段音频文件: ? 时间序列数据也是如此(例如,股票价格随时间变化的序列)。...如果对图像做处理,裁剪图像的左上角10 x 10大小的一块像素区域,用NumPy中的image[:10,:10]就可以实现。 这是一个图像文件的片段: ?

    1.5K30

    安利!这是我见过最好的NumPy图解教程

    NumPy数组的属性T可用于获取矩阵的转置。 ? 在较为复杂的用例中,你可能会发现自己需要改变某个矩阵的维度。...电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 ? 音频和时间序列 音频文件是一维样本数组。...这意味着如果你有一个10秒的CD质量的WAVE文件,你可以将它加载到长度为10 * 44,100 = 441,000个样本的NumPy数组中。想要提取音频的第一秒?...只需将文件加载到我们称之为audio的NumPy数组中,然后截取audio[:44100]。 以下是一段音频文件: ? 时间序列数据也是如此(例如,股票价格随时间变化的序列)。...如果对图像做处理,裁剪图像的左上角10 x 10大小的一块像素区域,用NumPy中的image[:10,:10]就可以实现。 这是一个图像文件的片段: ?

    1.7K10

    这是我见过最好的NumPy图解教程!没有之一

    NumPy数组的属性T可用于获取矩阵的转置。 ? 在较为复杂的用例中,你可能会发现自己需要改变某个矩阵的维度。...电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 ? 音频和时间序列 音频文件是一维样本数组。...这意味着如果你有一个10秒的CD质量的WAVE文件,你可以将它加载到长度为10 * 44,100 = 441,000个样本的NumPy数组中。想要提取音频的第一秒?...只需将文件加载到我们称之为audio的NumPy数组中,然后截取audio[:44100]。 以下是一段音频文件: ? 时间序列数据也是如此(例如,股票价格随时间变化的序列)。...如果对图像做处理,裁剪图像的左上角10 x 10大小的一块像素区域,用NumPy中的image[:10,:10]就可以实现。 这是一个图像文件的片段: ?

    1.7K40

    一键获取新技能,玩转NumPy数据操作

    NumPy数组的属性T可用于获取矩阵的转置。 ? 在较为复杂的用例中,你可能会发现自己需要改变某个矩阵的维度。...电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 ? 音频和时间序列 音频文件是一维样本数组。...这意味着如果你有一个10秒的CD质量的WAVE文件,你可以将它加载到长度为10 * 44,100 = 441,000个样本的NumPy数组中。想要提取音频的第一秒?...只需将文件加载到我们称之为audio的NumPy数组中,然后截取audio[:44100]。 以下是一段音频文件: ? 时间序列数据也是如此(例如,股票价格随时间变化的序列)。...如果对图像做处理,裁剪图像的左上角10 x 10大小的一块像素区域,用NumPy中的image[:10,:10]就可以实现。 这是一个图像文件的片段: ?

    1.8K10

    一键获取新技能,玩转NumPy数据操作

    NumPy数组的属性T可用于获取矩阵的转置。 ? 在较为复杂的用例中,你可能会发现自己需要改变某个矩阵的维度。...电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 ? 音频和时间序列 音频文件是一维样本数组。...这意味着如果你有一个10秒的CD质量的WAVE文件,你可以将它加载到长度为10 * 44,100 = 441,000个样本的NumPy数组中。想要提取音频的第一秒?...只需将文件加载到我们称之为audio的NumPy数组中,然后截取audio[:44100]。 以下是一段音频文件: ? 时间序列数据也是如此(例如,股票价格随时间变化的序列)。...如果对图像做处理,裁剪图像的左上角10 x 10大小的一块像素区域,用NumPy中的image[:10,:10]就可以实现。 这是一个图像文件的片段: ?

    1.7K20
    领券