SIGAI特约作者 Fisher Yu CV在读博士 研究方向:情感计算 什么是行人重识别(ReID) 如下图,给定一个行人图或行人视频作为查询query,在大规模底库中找出与其最相近的同一ID的行人图或行人视频 因为在安防场景下,跟踪一个目标,只靠人脸识别是不够的,在脸部信息丢失时(罪犯有时把脸特意蒙住一大部分,或者离太远了拍不清脸),行人信息就能辅助跟踪识别。 ReID与人脸识别有什么联系和区别? 都是多媒体内容检索,从方法论来说是通用的;但是ReID相比行人更有挑战,跨摄像头场景下复杂姿态,严重遮挡,多变的光照条件等等。 作者在文中做了实验来对比结果,找到最优的组合方案~~ 至于为什么分part的效果会更好,也是基于行人结构分割的先验知识驱使(类似用Pose key point来做一样)。 从实验结果看,使用Similarity-guided确实对性能提升很大: ?
1001封面.png SIGAI特约作者 Fisher Yu CV在读博士 研究方向:情感计算 什么是行人重识别(ReID) 如下图,给定一个行人图或行人视频作为查询query,在大规模底库中找出与其最相近的同一 ID的行人图或行人视频。 因为在安防场景下,跟踪一个目标,只靠人脸识别是不够的,在脸部信息丢失时(罪犯有时把脸特意蒙住一大部分,或者离太远了拍不清脸),行人信息就能辅助跟踪识别。 ReID与人脸识别有什么联系和区别? 都是多媒体内容检索,从方法论来说是通用的;但是ReID相比行人更有挑战,跨摄像头场景下复杂姿态,严重遮挡,多变的光照条件等等。 作者在文中做了实验来对比结果,找到最优的组合方案~~ 至于为什么分part的效果会更好,也是基于行人结构分割的先验知识驱使(类似用Pose key point来做一样)。
代金券、腾讯视频VIP、QQ音乐VIP、QB、公仔等奖励等你来拿!
行人重识别CV顶级会议的接受论文量稳步提升。 和 人脸识别 的异同 行人重识别 是用一个摄像头下的照片 去认其他摄像头下是否再次出现了这个人。 行人重识别落地的产品很少, 而人脸识别的大量应用已经落地 ? 之前学界研究的少 多摄像头/跨摄像头问题。 以上是造成行人重识别 在学界火的原因吧。 有些人靠衣服的颜色就可以判断出来了,还需要行人重识别么? 衣服颜色确实是行人重识别 做出判断一个重要因素,但光靠颜色是不足的。首先,摄像头之间是有色差,并且会有光照的影响。 目前有一些公开的代码,可详见之前的知乎回答:有哪些行人重识别公开代码 做了一些汇总。 谢谢您看完~我也是刚刚学习行人重识别,欢迎各种建议。
序言 探索了行人特征的基本学习方法。在这个实践中,我们将会学到如何一步一步搭建简单的行人重识别系统。欢迎任何建议。 pytorch源码 https://github.com/layumi/Person_reID_baseline_pytorch 行人重识别可以看成为图像检索的问题。 给定一张摄像头A拍摄到的查询图像,我们需要找到这个人在其他摄像头下的图像。行人重识别的核心在于如何找到有鉴别力的行人表达。很多近期的方法使用了深度学习模型来抽取视觉特征,达到了SOTA的结果。 快速问答:prepare.py 是如何识别同ID的图像? + Quick Question. How to recognize the images of the same ID? 可以去看看这两个函数具体怎么写。
论文地址https://arxiv.org/abs/1701.07717内容简介 这篇文章的主要贡献是只使用原始数据集进行半监督学习,提高行人重识别的Baseline。 实验 & 结果 1)作者将LSRO和两个已有的方法(All in one 和 Pseudo label)进行比较。 作者主要使用Market-150这个数据库进行实验,只使用了在Market-150数据库上由dcgan生成的图片. rank-1 accuracy=83.97%, mAP=66.07% 在在CUHK03上rank-1 accuracy = 84.6%, mAP = 87.4% 如下图: 思考: 一开始并没有弄清行人重识别的概念 ,一直按照分类的思想去理解,论文有很多不能理解的地方,后来查阅资料,还有数据集了解到行人重识别一般指图像检索而不是图像分类。
欢迎大家转发分享~ 行人重识别 Person Re-identification / Person Retrieval 专知荟萃 行人重识别 Person Re-identification / Person ] 行人重识别综述:从哈利波特地图说起 行人再识别中的迁移学习:图像风格转换(Learning via Translation) 行人对齐+重识别网络 SVDNet for Pedestrian Retrieval 2017 ICCV 行人检索/重识别 接受论文汇总 从人脸识别 到 行人重识别,下一个风口 GAN(生成式对抗网络)的研究现状,以及在行人重识别领域的应用前景? (行人重识别)【包含与行人检测的对比】 行人重识别综述(Person Re-identification: Past, Present and Future) 进阶论文及代码 Person Re-identification q=content/research] DaPeng Chen [http://gr.xjtu.edu.cn/web/dapengchen/home] 特别提示-专知行人重识别主题:
最近俄亥俄州立大学的认知研究科学家们在人脸识别技术和机器学习方面有了突破性进展,能够让电脑比人类更准确地读取面部表情进而识别情感状态。 准确度超人类——在扩展表情数据库的帮助下,计算机系统在实验室环境中分辨真假表情的准确率可达85%,而人类的平均准确率得分只有55%。 谷歌眼镜用户可以利用这种软件实时检测人们的表情,并读懂他们的情感。 ? ARIS点评 巨大的潜力——实时情感识别技术可以极大地改善所收集的信息的数量和质量,从而达到最优的用户体验目的。 在这种思想指导下,Emotient公司为零售和医疗行业垂直体系提出了清晰的愿景和令人信服的价值主张。,而且这种技术在公共安全和国家安保领域也极有前途。 具有情感意识的机器人——情感识别运算代表人机交互取得了重要进展。对于真正的"智能系统"开发而言,这种技术是必需的,但还不够。
AI 科技评论按:本文首发于知乎行人重识别专栏,AI 科技评论获其作者郑哲东授权转载。 1.Motivation 近年来,对行人重识别(person re-ID)问题的研究也越来越多了。 这篇文章集中于语法层面上,也就是利用人体结构来增强识别能力。现阶段行人重识别的发展一部分是归因于大数据集和深度学习方法的出现。 因为 行人对齐和行人识别是可以互利互惠的两个问题。 当我们做行人识别的时候,行人人体是高亮的(可以见如下的热度图),背景中不含重要信息,自然就区分出来了。 所以我们可以依此来把人体抠出来,预测输入的变换方式。 而反过来,当行人数据对齐得好的时候,行人识别也可以识别得更准。 达到互相帮助的目的。 量化的行人重识别指标也都不错。
python使用库:PIL pytesseract 主要辅助识别程序:Tesseract-OCR 个人踩坑经历-实测有效 代码块: from PIL import Image import pytesseract 汉化包资源下载: 链接:https://pan.baidu.com/s/1vqZVhu-WTeE-6zed1ZpoEg 提取码:lkkl 复制这段内容后打开百度网盘手机App,操作更方便哦 一) 直接执行下载好的 ) 解压缩后的所有文件复制到 Tesseract-OCR 下的 tessdata文件夹下 我的路径是 C:\Program Files (x86)\Tesseract-OCR\tessdata,重复的文件跳过即可 TESSDATA_PREFIX的环境变量,设置为安装目录下的tessdata目录 如:D:\Program Files (x86)\Tesseract-OCR\tessdata 设置了环境变量后需要重启下才生效 执行前文代码即可 ‘’示例 识别结果 识别原图 错误率有点儿高 附上其他相关学习链接: 1)https://zhuanlan.zhihu.com/p/30391661?
人体分析 腾讯云神图·人体分析(Body Analysis)基于腾讯优图领先的人体分析算法,提供人像分割、人体检测、行人重识别(ReID)等服务。 支持识别图片或视频中的半身人体轮廓,并将其与背景进行分离;支持通过人体检测,识别行人的穿着、体态等属性信息,实现跨摄像头跨场景下行人的识别与检索。 image.png Python调用腾讯云人体分析实现识别行人 过程分析:先上连接大家看一下腾讯的产品 腾讯云的人体分析网址 1.工具 腾讯云的API需要调用的是网上的图片,返回的结果是一串稍微复杂的信息 (包括标识出人的框框,还有人的朝向等等)。 (可以参照我上一篇文章,把图片上传到对象存储的桶里) 3.步骤总结: 调用腾讯云人体分析API->对返回的数据进行处理并存储->用Python的第三方库画图,框出行人。
Zynq-7000 人体肤色识别 1 背景知识 在肤色识别算法中,常用的颜色空间为Ycbcr,Y代表亮度,cb代表蓝色分量,cr代表红色分量。 在 CbCr空间下,肤色类聚性好,利用人工阈值法将肤色与非肤色区域分开,形成二值图像。 2.1 肤色识别IP的介绍 ? 从总体模块图可以看到首先实现rgb颜色空间转ycbcr颜色空间,其次实现肤色识别。 2.3 实验结果 ? 实验原图1 ? 实验原图2 ? 实验结果图1 ? 实验结果图2 结果分析:从实验原图和实验结果来看,肤色识别模块将某些非肤色部分也识别称肤色,这里我们需要改变的对肤色进行判定的条件: Cb > 77 && Cb < 127 Cr > 133 && Cr
1.Motivation 近年来,对行人重识别(person re-ID)问题的研究也越来越多了。 这篇文章集中于语法层面上,也就是利用人体结构来增强识别能力。现阶段行人重识别的发展一部分是归因于大数据集和深度学习方法的出现。 因为 行人对齐和行人识别是可以互利互惠的两个问题。 当我们做行人识别的时候,行人人体是高亮的(可以见如下的热度图),背景中不含重要信息,自然就区分出来了。 所以我们可以依此来把人体抠出来,预测输入的变换方式。 而反过来,当行人数据对齐得好的时候,行人识别也可以识别得更准。 达到互相帮助的目的。 ? 量化的行人重识别指标也都不错。(注:其中 cuhk03 跑的是新的 test setting,图像一半训练一半测试,所以指标相对低一些) ?
一:简介 最近项目在做了身份证银行卡识别之后,开始实现人脸识别和活体识别,其中人脸识别包括人脸入库、人脸查找、人脸1:N对比、人脸N:N对比,另外活体识别运用在安全登录功能。 大家都熟知的支付宝使用face++ 的服务来实现人脸识别,在实际项目中使用了讯飞的人脸识别SDK进行二次封装来实现活体识别。主要实现了张嘴和摇头两个活体动作的识别。 在实际运用中,有很多app为了高度保证用户使用的安全问题,除了常规的账号密码登录之外,相继实现了指纹登录,手势登录,第三方登陆(QQ、微信、支付宝)、刷脸登录,接下里我就和大家分享一下如何实现人脸识别的活体检测 二:实现思路分析 点击识别按钮,调用相机 CameraRules类,检测相机权限 初始化页面,创建摄像页面,创建张嘴数据和摇头数据 开启识别,脸部框识别 脸部部位识别,脸部识别判断是否检测到人脸 检测到人脸之后 ,判断位置 位置判断合适,判断是否张嘴 张嘴判断完毕,验证是否摇头 摇头判断完毕,3秒倒计时拍照 拍照完毕,选择重拍或者上传图片 选择重拍重复5-9步骤,选择上传将图片数据回调 数据clean 三:实现源码分析
人脸识别效果 ? 节点图 使用colcon build编译。 ? 开启人脸识别节点: ros2 run dlib_face_detection dlib_face_detector ?
AI涉及的领域众多,图像识别中的人脸识别是其中一个有趣的分支。 百度的BFR,Face++的开放平台,汉王,讯飞等等都提供了人脸识别的API,对于老码农而言,自己写一小段代码,来看看一张图片中有几个人,没有高大上,只是觉得好玩,而且只需要7行代码。 至于Haar,LBP的具体原理,可以参考opencv的相关文档,简单地,可以理解为人脸的特征数据。 第3行 加载目标图片 imread 人脸识别系统一般分为:人脸图像采集、人脸图像预处理、人脸图像特征提取以及匹配与识别。 简化起见,之间读入图片,这是一张去年中生代北京闭门会的集体照。 ? 最后,安装python-opencv: $sudo apt-get install python-opencv OpenCV的Python环境简单验证 一行代码验证OpenCV的Python环境是否成功
前言:行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。 在行人重识别问题上,具体为同一行人的不同图片相似度大于不同行人的不同图片。最后网络的损失函数使得相同行人图片(正样本对)的距离尽可能小,不同行人图片(负样本对)的距离尽可能大。 如下图所示,图片被垂直等分为若干份,因为垂直切割更符合我们对人体识别的直观感受,所以行人重识别领域很少用到水平切割。 (2)为了解决图像不对齐情况下手动图像切片失效的问题,一些论文利用一些先验知识先将行人进行对齐,这些先验知识主要是预训练的人体姿态(Pose)和骨架关键点(Skeleton) 模型。 融合了运动信息的序列图像特征能够提高行人重识别的准确度。
本文盘点CVPR 2020 所有行人检测(Pedestrian Detection)与人员重识别(Person Re-Identification,ReID)相关论文,在视频监控领域该方向技术应用广泛, 但不仅仅局限于这两种技术,因为拥挤人群计数(Crowd Counting)往往与行人检测相关,而步态识别(Gait Recognition)可看作一种特殊的人员重识别,故将以上方向的论文均归为行人检测与重识别 行人检测的论文不多,总计 5 篇,从内容看解决行人与行人、行人与物体间的遮挡是研究的重点。 拥挤人群计数,总计 3 篇文章,都是在解决透视和尺度问题带来的挑战。 人员重识别部分总计 23 篇文章,除了基于图像的ReID(8篇),基于视频的ReID(3篇),含有众多细分方向:跨分辨率、跨域、跨模态(可见光-红外)、遮挡、非监督、射频信号人员重识别都很有特色。 另外中科院推出了一个着装改变的人员重识别数据集COCAS,相信能促进该领域更加实用化。 步态识别共 2 篇文章,这个方向研究的人不多,其中一篇来自著名的步态识别公司银河水滴等,且代码将开源。
人体分析包含人像分割、人体识别、行人重识别(Reid)等服务。人像分割可识别视频、图片中的半身人体轮廓,并将其与背景分离;人体检测,可识别行人的穿着、体态、发型等信息;行人重识别(Reid)可实现跨摄像头跨场景下行人的识别与检索。可应用于人像抠图、背景特效、行人搜索、人群密度检测等场景。
扫码关注云+社区
领取腾讯云代金券