首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

行人重识别新春特惠

行人重识别(Person Re-Identification,简称ReID)是指在不同的摄像头视角、不同的时间点或者不同的地点,识别出同一个人的技术。这项技术在安防监控、智能零售、智慧城市等领域有着广泛的应用。

基础概念

行人重识别系统通常包括以下几个关键部分:

  1. 特征提取:从行人的图像或视频帧中提取出能够代表该行人的独特特征。
  2. 特征匹配:将不同摄像头或不同时间点获取的特征进行匹配,以确定是否为同一人。
  3. 数据关联:将匹配结果与数据库中的记录关联起来,以便进行后续的追踪和分析。

相关优势

  • 跨摄像头追踪:能够在多个摄像头之间无缝追踪同一行人。
  • 时间跨度适应:即使在不同时间段也能准确识别行人。
  • 地点无关性:在不同的地理位置仍能保持识别的准确性。

类型

  • 基于图像的ReID:主要处理静态图像。
  • 基于视频的ReID:处理连续的视频帧,可以提供更丰富的动态信息。
  • 基于深度学习的ReID:利用深度神经网络提取特征,提高了识别的准确率。

应用场景

  • 安防监控:在公共场所进行人员追踪和管理。
  • 智能零售:分析顾客行为,优化店铺布局和服务。
  • 智慧城市:提升城市管理水平,优化交通和公共安全。

可能遇到的问题及解决方法

问题1:识别准确率不高

原因:可能是由于光照变化、遮挡、摄像头角度差异等因素影响。 解决方法

  • 使用更先进的深度学习模型,如ResNet、Inception等。
  • 增加数据增强技术,模拟不同的光照和视角条件。
  • 结合上下文信息和其他传感器数据(如红外摄像头)。

问题2:实时性不足

原因:复杂的特征提取和匹配算法可能导致处理速度慢。 解决方法

  • 优化算法,减少计算复杂度。
  • 使用GPU加速或分布式计算提高处理速度。
  • 在边缘设备上进行初步处理,减轻中心服务器的压力。

问题3:数据库规模过大导致检索效率低下

原因:随着数据库中行人记录的增加,检索匹配的时间成本上升。 解决方法

  • 使用高效的索引结构,如哈希表或树状结构。
  • 实施分片技术,将数据分散存储和处理。
  • 定期清理和维护数据库,去除冗余和不必要的记录。

示例代码(基于Python和OpenCV)

以下是一个简单的行人重识别示例,使用了预训练的深度学习模型:

代码语言:txt
复制
import cv2
import numpy as np
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
from tensorflow.keras.preprocessing import image

# 加载预训练模型
model = ResNet50(weights='imagenet', include_top=False, pooling='avg')

def extract_features(img_path):
    img = image.load_img(img_path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    features = model.predict(x)
    return features.flatten()

# 示例:比较两个图像的特征
feature1 = extract_features('path_to_image1.jpg')
feature2 = extract_features('path_to_image2.jpg')

# 计算特征之间的距离
distance = np.linalg.norm(feature1 - feature2)
print(f'Feature Distance: {distance}')

通过这种方式,可以初步判断两个图像中的行人是否为同一人。实际应用中,还需要结合更多的优化和策略来提高整体性能。

希望这些信息对你有所帮助!如果有更多具体问题,欢迎继续咨询。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 行人重识别ReID整理

    行人重识别(Person re-identification)也称行人再识别,被广泛认为是一个图像检索子问题,是利用计算机视觉技术判断图像或者视频中是否存在特定行人的技术,即给定一个监控行人图像检索跨设备下的该行人图像...行人重识别技术可以弥补目前固定摄像头的视觉极限,并可与行人检测、行人跟踪技术相结合,应用于视频监控、智能安防等领域。...一般行人重识别具有短时效应,我们需要识别的行人的衣服是一个主要特征,当然衣服只是特征之一,如果该行人更换了衣服,那么行人重识别可能会失效。...数据集 数据集通常是通过人工标注或者检测算法得到的行人图片,目前与检测独立,注重识别。分为训练集、验证集、Query(一堆Probe,待检索的个人照片)、Gallery(图像库)。...单帧 序列 挑战 行人重识别目前准确率只能达到90%,不同人脸识别,可以达到99%的准确率,主要原因为 常用的评价指标 rank-k:算法返回的排序列表中,前k位存在检索目标则称为rank-k命中。

    1.5K10

    用于大规模行人重识别的行人对齐网络

    AI 科技评论按:本文首发于知乎行人重识别专栏,AI 科技评论获其作者郑哲东授权转载。 1.Motivation 近年来,对行人重识别(person re-ID)问题的研究也越来越多了。...这篇文章集中于语法层面上,也就是利用人体结构来增强识别能力。现阶段行人重识别的发展一部分是归因于大数据集和深度学习方法的出现。...因为 行人对齐和行人识别是可以互利互惠的两个问题。 当我们做行人识别的时候,行人人体是高亮的(可以见如下的热度图),背景中不含重要信息,自然就区分出来了。...而反过来,当行人数据对齐得好的时候,行人识别也可以识别得更准。 达到互相帮助的目的。 下图为对齐的效果 (上一行为原始检测,下一行为对齐后的结果)。...量化的行人重识别指标也都不错。

    3.1K80

    行人重识别 PCB-RPP,SGGNN

    SIGAI特约作者 Fisher Yu CV在读博士 研究方向:情感计算 什么是行人重识别(ReID) 如下图,给定一个行人图或行人视频作为查询query,在大规模底库中找出与其最相近的同一ID的行人图或行人视频...因为在安防场景下,跟踪一个目标,只靠人脸识别是不够的,在脸部信息丢失时(罪犯有时把脸特意蒙住一大部分,或者离太远了拍不清脸),行人信息就能辅助跟踪识别。 ReID与人脸识别有什么联系和区别?...都是多媒体内容检索,从方法论来说是通用的;但是ReID相比行人更有挑战,跨摄像头场景下复杂姿态,严重遮挡,多变的光照条件等等。...PCB框架[1] 如上图所示,PCB框架的流程是: 1、对输入384*128行人图提取深度特征(ResNet50),把最后一个block( averagepooling前)的下采样层丢弃掉,得到空间大小...作者在文中做了实验来对比结果,找到最优的组合方案~~ 至于为什么分part的效果会更好,也是基于行人结构分割的先验知识驱使(类似用Pose key point来做一样)。

    1.8K40

    行人重识别 PCB-RPP,SGGNN

    1001封面.png SIGAI特约作者 Fisher Yu CV在读博士 研究方向:情感计算 什么是行人重识别(ReID) 如下图,给定一个行人图或行人视频作为查询query,在大规模底库中找出与其最相近的同一...ID的行人图或行人视频。...因为在安防场景下,跟踪一个目标,只靠人脸识别是不够的,在脸部信息丢失时(罪犯有时把脸特意蒙住一大部分,或者离太远了拍不清脸),行人信息就能辅助跟踪识别。 ReID与人脸识别有什么联系和区别?...都是多媒体内容检索,从方法论来说是通用的;但是ReID相比行人更有挑战,跨摄像头场景下复杂姿态,严重遮挡,多变的光照条件等等。...作者在文中做了实验来对比结果,找到最优的组合方案~~ 至于为什么分part的效果会更好,也是基于行人结构分割的先验知识驱使(类似用Pose key point来做一样)。

    4.4K20

    深度 | 用于大规模行人重识别的行人对齐网络

    1.Motivation 近年来,对行人重识别(person re-ID)问题的研究也越来越多了。...这篇文章集中于语法层面上,也就是利用人体结构来增强识别能力。现阶段行人重识别的发展一部分是归因于大数据集和深度学习方法的出现。...因为 行人对齐和行人识别是可以互利互惠的两个问题。 当我们做行人识别的时候,行人人体是高亮的(可以见如下的热度图),背景中不含重要信息,自然就区分出来了。...而反过来,当行人数据对齐得好的时候,行人识别也可以识别得更准。 达到互相帮助的目的。 ? 下图为对齐的效果 (上一行为原始检测,下一行为对齐后的结果)。...量化的行人重识别指标也都不错。(注:其中 cuhk03 跑的是新的 test setting,图像一半训练一半测试,所以指标相对低一些) ?

    1.8K80

    【经典课程】《基于深度学习和行人重识别》

    来源:专知本文为课程介绍,建议阅读5分钟适合深度学习和行人重识别领域无基础的入门者学习。...该课程为浙江大学罗浩博士于2018年10月录制的《基于深度学习和行人重识别》网课视频,该课程首发于AI300学院。为了让更多人学习该课程,现免费在B站公开。...由于该网课录制于2018年末,所以知识点已经有些陈旧,因此主要适合深度学习和行人重识别领域无基础的入门者学习,有基础者无需学习此课程。...课程主要包括深度学习基础、行人重识别理论基础和行人重识别代码实践三个篇章。考虑到该课程免费开放以及作者工作较忙,所以日后很难有精力进行答疑和维护。...4、商业场景应用之行人重识别基本介绍 5、行人重识别——表征学习与度量学习 6、行人重识别——全局特征与局部特征 7、行人重识别——单帧与序列重识别 8、最新论文与未来发展 第三章、行人重识别实践 9

    98310

    基于深度学习的行人重识别研究综述

    前言:行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。...通过最小化,最后可以使得正样本对之间的距离逐渐变小,负样本对之间的距离逐渐变大,从而满足行人重识别任务的需要。...如下图所示,图片被垂直等分为若干份,因为垂直切割更符合我们对人体识别的直观感受,所以行人重识别领域很少用到水平切割。...但是通常单帧图像的信息是有限的,因此有很多工作集中在利用视频序列来进行行人重识别方法的研究[17-24]。...融合了运动信息的序列图像特征能够提高行人重识别的准确度。

    3K80

    行人重识别 Person Re-identification知识资料全集

    欢迎大家转发分享~ 行人重识别 Person Re-identification / Person Retrieval 专知荟萃 行人重识别 Person Re-identification / Person...] 行人重识别综述:从哈利波特地图说起 行人再识别中的迁移学习:图像风格转换(Learning via Translation) 行人对齐+重识别网络 SVDNet for Pedestrian Retrieval...2017 ICCV 行人检索/重识别 接受论文汇总 从人脸识别 到 行人重识别,下一个风口 GAN(生成式对抗网络)的研究现状,以及在行人重识别领域的应用前景?...(行人重识别)【包含与行人检测的对比】 行人重识别综述(Person Re-identification: Past, Present and Future) 进阶论文及代码 Person Re-identification...q=content/research] DaPeng Chen [http://gr.xjtu.edu.cn/web/dapengchen/home] 特别提示-专知行人重识别主题:

    4.5K101

    从人脸识别到行人重识别,下一个风口

    行人重识别为国内现在主要的研究方向之一,投稿量则在逐年递增。...行人重识别CV顶级会议的接受论文量稳步提升。...行人重识别落地的产品很少, 而人脸识别的大量应用已经落地 ? 之前学界研究的少 多摄像头/跨摄像头问题。 以上是造成行人重识别 在学界火的原因吧。...所以人脸识别在实际的重识别应用中很可能有限。 2. 有些人靠衣服的颜色就可以判断出来了,还需要行人重识别么? 衣服颜色确实是行人重识别 做出判断一个重要因素,但光靠颜色是不足的。...目前有一些公开的代码,可详见之前的知乎回答:有哪些行人重识别公开代码 做了一些汇总。 谢谢您看完~我也是刚刚学习行人重识别,欢迎各种建议。

    2.5K80

    CVPR 2020 论文大盘点-行人检测与重识别篇

    本文盘点CVPR 2020 所有行人检测(Pedestrian Detection)与人员重识别(Person Re-Identification,ReID)相关论文,在视频监控领域该方向技术应用广泛,...但不仅仅局限于这两种技术,因为拥挤人群计数(Crowd Counting)往往与行人检测相关,而步态识别(Gait Recognition)可看作一种特殊的人员重识别,故将以上方向的论文均归为行人检测与重识别...人员重识别部分总计 23 篇文章,除了基于图像的ReID(8篇),基于视频的ReID(3篇),含有众多细分方向:跨分辨率、跨域、跨模态(可见光-红外)、遮挡、非监督、射频信号人员重识别都很有特色。...单位 | 中国科学院自动化研究所;旷视;北京理工大学 代码 | https://github.com/wangguanan/HOReID(即将) 解读 | CVPR 2020 | 旷视新方法优化解决遮挡行人重识别...跨模态人员重识别 可见光-红外人员重识别 [28].Hi-CMD: Hierarchical Cross-Modality Disentanglement for Visible-Infrared Person

    2K20

    NeurIPS 2021 | 图像损坏场景下行人重识别新基准

    导读 行人重识别(Person ReID)在安全部署领域有着广泛应用,当前的研究仅考虑ReID模型在干净数据集上的性能,而忽略了ReID模型在各种图像损坏场景(雨天、雾天等)下的鲁棒性。...贡献 本文是SUSTech VIP Group(南方科技大学 视觉智能与感知课题组)针对图像损坏场景下的行人重识别的研究。...相反的是,本文发现,在行人重识别任务中,模型的损坏鲁棒性和跨数据集泛化性之间存在着一定的关联。...实验结果表明,行人重识别任务中,模型的损坏鲁棒性和跨数据集泛化性之间存在强线性正相关(图左皮尔森相关系数ρ=0.97)。 5....结论 本文提出了一个全新的ReID任务场景,图片损坏场景下的行人重识别。

    1.3K30

    FedReID - 联邦学习在行人重识别上的首次深入实践

    作者 | 庄伟铭 编辑 | 陈大鑫 行人重识别的训练需要收集大量的人体数据到一个中心服务器上,这些数据包含了个人敏感信息,因此会造成隐私泄露问题。...联邦学习是一种保护隐私的分布式训练方法,可以应用到行人重识别上,以解决这个问题。 但是在现实场景中,将联邦学习应用到行人重识别上因为数据异构性,会导致精度下降和收敛的问题。...本文介绍一篇来自 ACMMM20 Oral 的论文,这篇论文主要通过构建一个 benchmark,并基于 benchmark 结果的深入分析,提出两个优化方法,提升现实场景下联邦学习在行人重识别上碰到的数据异构性问题...2 Benchmark结果 通过 Benchmark 的实验,论文里描述了不少联邦学习和行人重识别结合的洞见。这边着重提出两点因数据异构性导致的问题。 1....4 总结 针对数据隐私问题,这篇论文将联邦学习应用到行人重识别,并做了深入的研究分析。

    1.7K40

    ​CVPR 2022丨特斯联AI提出:基于图采样深度度量学习的可泛化行人重识别

    最近的研究表明,显式深度特征匹配以及大规模多样化的训练数据均可显著提升行人重识别的泛化能力。但是,在大规模数据上,学习深度匹配器的效率还未得到充分研究。...近日,特斯联科技集团首席科学家邵岭博士及团队提出了一种高效的小批量采样(mini-batch sampling)方法——图采样(Graph Sampling, GS),用于大规模深度度量学习,极大改善了可泛化行人重识别...可泛化行人重识别引关注,大规模深度度量学习效率尚存提升空间 行人重识别是一项热门的计算机视觉任务,其目标是通过对大量图库图像进行检索,以便找出给定的查询图像中的行人。...在过去的两年中,可泛化行人重识别因其研究和实用价值而受到越来越多的关注。这类研究探索学习行人重识别模型对于未见过的场景的可泛化性,并采用了直接的跨数据集评估来进行性能基准测试。...GS为所有的类别构建一个图,并且总是对最近的相邻类别进行采样 因此,对于大规模的行人重识别训练来说,在分类或是度量学习中涉及类别参数或是特征并不高效。

    62640

    关注度越来越高的行人重识别,有哪些热点?

    关键词:行人重识别 数据集 前沿技术 在茫茫人海中,你能不能一眼就找到想找的那个人? 如今,这个任务对于计算机来说,可能是小菜一碟了。而这得益于近年行人重识别技术的飞速发展。...行人重识别被称为人脸识别之后的「杀手级应用」 行人重识别已经成为人脸识别之后,计算机视觉领域的一个重点研究方向。...行人重识别用在哪儿? 首先,上文中已提到,行人重识别是人脸识别技术的一个重要补充。 人脸识别的前提是:清晰的正脸照。但在图像只有背面、或其它看不到人脸的角度时,人脸识别便失效了。...这时候,行人重识别便可通过姿态、衣着等特征,继续追踪目标人物。 目前,行人重识别技术在安防领域、自动驾驶等领域都有着广泛的应用。...; 行人检索 其中,数据收集作为第一步,是整个行人重识别研究的基础。

    2K10
    领券