展开

关键词

图像识别解释方法的视觉演变

正文字数:4270 阅读时长:7分钟 图像识别(即 对图像中所显示的对象进行分类)是计算机视觉中的一项核心任务,因为它可以支持各种下游的应用程序(自动为照片加标签,为视障人士提供帮助等),并已成为机器学习 在过去的十年中,深度学习(DL)算法已成为最具竞争力的图像识别算法。但是,它们默认是“黑匣子”算法,也就是说很难解释为什么它们会做出特定的预测。 为什么这会成为一个问题呢? 在本文中,我们概述了一些为图像识别而发明的解释方法,讨论了它们之间的权衡,并提供了一些示例和代码,您可以自己使用Gradio来尝试这些方法。 在实践中,LOO的一个巨大优势是它不需要任何访问模型内部的功能,甚至可以处理除识别之外的其他计算机视觉任务,从而使它成为一个灵活的通用工具。 那有什么缺点呢?首先,它很慢。 该方法在Attribution in Scale and Space [2020],中提出,旨在解决具有集成梯度的特定问题,包括消除“基线”参数,并消除某些易于在解释中出现的视觉伪像。

34430

基于计算机视觉的棋盘图像识别

本期我们将一起学习如何使用计算机视觉技术识别棋子及其在棋盘上的位置 ? 我们利用计算机视觉技术和卷积神经网络(CNN)为这个项目创建分类算法,并确定棋子在棋盘上的位置。 使用低级和中级计算机视觉技术来查找棋盘的特征,然后将这些特征转换为外边界和64个独立正方形的坐标。该过程以Canny边缘检测和Hough变换生成的相交水平线、垂直线的交点为中心。

33210
  • 广告
    关闭

    什么是世界上最好的编程语言?丨云托管征文活动

    代金券、腾讯视频VIP、QQ音乐VIP、QB、公仔等奖励等你来拿!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于计算机视觉的棋盘图像识别

    本期我们将一起学习如何使用计算机视觉技术识别棋子及其在棋盘上的位置 ? 我们利用计算机视觉技术和卷积神经网络(CNN)为这个项目创建分类算法,并确定棋子在棋盘上的位置。 使用低级和中级计算机视觉技术来查找棋盘的特征,然后将这些特征转换为外边界和64个独立正方形的坐标。该过程以Canny边缘检测和Hough变换生成的相交水平线、垂直线的交点为中心。

    22330

    计算机的视觉图像识别的四条通天大道

    视觉”承担着我们80%的信息摄入工作。 在解决“听”“说”问题的同时,我们也要教会计算机“看”,也就是图像识别,以识别一朵花为例,用户将图片上传后,计算机将它转化成“0101”的数字流,然后输入深度神经网络,经过层层分析、层层抽象,对包括像素在内的各层信息与现有的大数据进行比对 目前世界上最大的图像识别数据库ImageNet的图片分类有1000多类。在百度的图片数据库的分类已经达到了4万类。这也是百度大脑图像识别的巨大优势。 计算机的视觉计划一般从四个方面来推进,首先是人脸识别,通过捕捉人脸关键点形成人脸表情王,实现人脸的准确识别。 最后图像识别还会被引用到AR(现实增强)领域来提高视觉效果,大家都看过3D电影的视觉效果,身临其境的真实感,而AR则是360全方位无死角的身临其境。

    46750

    【python 图像识别图像识别从菜鸟

    1.6K41

    图像识别

    我们的大脑使视觉看起来很容易。人类不会分解一只狮子和一只美洲虎,看一个标志,或认出一个人的脸。但这些实际上是用计算机解决的难题:他们看起来很容易,因为我们的大脑非常好地理解图像。 特别地,我们发现一种称为深卷积神经网络的模型 可以在硬性视觉识别任务上实现合理的性能 - 匹配或超过某些领域的人类表现。 通过验证其对ImageNet的工作,研究人员已经证明了计算机视觉的稳步进展,这是计算机视觉 的学术基准。 我们现在正在采取下一步,发布在最新型号Inception-v3上运行图像识别的代码。 Inception-v3 使用2012年的数据对ImageNet大型视觉识别挑战进行了培训。 我们还将讨论如何从此模型中提取更高级别的功能,这些功能可能被重用于其他视觉任务。 我们很高兴看到社区将如何处理这种模式。

    3K80

    Airtest图像识别

    Airtest是一款网易出品的基于图像识别面向手游UI测试的工具,也支持原生Android App基于元素识别的UI自动化测试。 图示为AirtestIDE中脚本运行范例 本文重点是针对Airtest中的图像识别进行代码走读,加深对图像识别原理的理解(公众号贴出的代码显示不全仅供参考,详细代码可以在github查看)。 这里可以看到,Airtest也没有自研一套很牛的图像识别算法,直接用的OpenCV的模板匹配方法。 四、接着看另外一个方法 aircv.find_sift 定义在sift.py里面: ? ? FlannBasedMatcher(index_params,search_params).knnMatch(des1,des2,k=2) 哪个优先匹配上了,就直接返回结果,可以看到用的都是OpenCV的图像识别算法 六、总结 1、图像识别,对不能用ui控件定位的地方的,使用图像识别来定位,对一些自定义控件、H5、小程序、游戏,都可以支持; 2、支持多个终端,使用图像识别的话可以一套代码兼容android和ios哦,

    4.7K20

    【掌上计算机视觉大有可为】智能终端图像识别、美化、生成应用盘点

    移动AI,尤其是计算机视觉,已经成为人们生活中重要的一部分。本文将会从最新趋势、未来机会、用户将如何使用手机上的AI等方面进行分析。 三个计算机视觉方面的应用正在兴起:图像识别、图像优化和图像生成。 图像识别:时尚、零售、设计、医疗……各行业的有趣应用 我们可以期待更多类似于Shazam的应用程序(Shazam 是一款可以识别您周围播放的音乐和电视节目的移动应用程序)。 在医疗领域,尤其是皮肤病检测,图像识别也很重要。用户可以拍摄照片,获得初步诊断。斯坦福大学的研究人员开发了可以发现皮肤癌的算法。根据结果,其诊断皮肤癌的效率与专业医生相当。 计算机视觉的一个分支是光学字符识别(OCR),可以理解图像中的文本,并将识别的词提取为机器编码的文本流。 这适用于各种领域,包括视觉信用卡扫描和银行支票存款。 图像识别领域还有一个重要的部分是图形分割,应用程序不仅能定位图片中的特定物体,还能识别该物体的界限。这对面孔识别、背景移除、制作贴纸都很有用。

    768120

    图像识别——MNIST

    本文使用NEURAL程序来介绍一下在SAS里如何实现图像识别。例子所用的数据集是MNIST数据集,从http://yann.lecun.com/exdb/mnist/可以获取。

    79740

    图像识别之GridMask

    GridMask: https://arxiv.org/abs/2001.04086

    76910

    图像识别之mixupcutmix

    本人kaggle分享链接:https://www.kaggle.com/c/bengaliai-cv19/discussion/126504

    99210

    算法集锦(14)|图像识别| 图像识别算法的罗夏测试

    随着对基于深度学习的图像识别算法的大量研究与应用,我们倾向于将各种各样的算法组合起来快速进行图片识别和标注。

    59220

    图像识别——突破与应用

    最近对图像识别的兴趣激增主要集中在这种类型的感官输入上。例如,无人驾驶汽车需要显着改进的视觉处理和识别能力,此外,还有许多其他的关键感官输入来做出正确的决定。 ---- [3] 最近的变革 3.1 方法 图像识别历史悠久。在计算机视觉,物体识别,机器视觉,场景理解,图像理解,图像分类和图像分析等不同名称下,存在相关和/或同义字段的图像识别。 计算机(或机器)的视觉总体上涵盖了识别作为一个子部分,同时它也涉及图像重组和重构。在更高层次上,有两种不同的技术方法能够解决图像识别任务。 它以其年度视觉识别挑战(称为 ILSVRC)而闻名,其中学术和工业领域的不同参与者聚集在 ImageNet 数据上竞争最佳的图像识别算法性能。 图像识别的最新进展将极大地影响所有的商业用途。 4.3 检测事件 图像识别视觉监控和安全方面有很多应用。视频图像的高效处理提供了丰富的信息来识别和分类感兴趣的事件。

    3.9K113

    图像识别之augmix

    augmix: https://github.com/google-research/augmix

    54810

    PhotoSynth:图像识别建模技术

    PhotoSynth是微软公司从华盛顿大学购买来的一项技术,主要作用是通过平面照片自动建立空间模型,目前已经接近即将发布的前夕。 举例来说,游客来到上海,外滩...

    606100

    H5 图像识别

    识别对比 ---- 1、百度识别 发现百度的图片搜索识别率不是特别,下面为测试图片跟测试后的结果: 测试图片: 下面为测试后的结果: 2、采用 tesseract.js 后结果 H5 图像识别

    16330

    图像识别(自己训练模型)

    2.做得图像识别网络模型:(这个是技术核心,但是在神经网络里也有一句话,就是大量的数据训练的网络也能超过一个优秀的网络模型,所以说你数据必须大量,必须多) ?

    2.1K70

    【研究】图像识别及应用

    1 图像识别是什么? 2 图像识别的应用场景有哪些? 什么是图像识别 图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。 实际上,图像识别和图像分割并不存在严格的界限。从某种意义上,图像分割的过程就是图像识别的过程。 图为图像识别系统图 图像识别的国内外研究现状 图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。 ▷ 物体识别主要指的是对三维世界的客体及环境的感知和认识,属于高级的计算机视觉范畴。 图像识别作为计算视觉技术体系中的重要一环,一直备受重视。微软在两年前就公布了一项里程碑式的成果:它的图像系统识别图片的错误率比人类还要低。如今,图像识别技术又发展到一个新高度。

    4K70

    ResNet图像识别准确率暴降40个点!这个ObjectNet让世界最强视觉模型秒变水货

    该数据集让AlexNet、ResNet、Inception等最先进的图像识别模型纷纷栽倒,性能暴降40%~45%。 计算机视觉模型已经学会了非常精确地识别照片中的物体,甚至有些模型在某些数据集上的表现比人类更好。 但是,同样的物体检测器如果在现实世界中使用,它们的性能会显著下降,这就给自动驾驶汽车和其他使用机器视觉的安全至关重要的系统带来了可靠性方面的担忧。 313个对象类,其中113个与ImageNet重叠 模型性能大幅下降,这是现实世界中视觉系统的表现! 我们希望这个新的数据集能够产生在现实世界中表现强大的计算机视觉算法,而不会出现意外的失败。”

    49010

    基于OpenCV的棋盘图像识别

    本期我们将一起学习如何使用计算机视觉技术识别棋子及其在棋盘上的位置 我们利用计算机视觉技术和卷积神经网络(CNN)为这个项目创建分类算法,并确定棋子在棋盘上的位置。 使用低级和中级计算机视觉技术来查找棋盘的特征,然后将这些特征转换为外边界和64个独立正方形的坐标。该过程以Canny边缘检测和Hough变换生成的相交水平线、垂直线的交点为中心。

    18920

    相关产品

    • 腾讯智慧视觉分析系统

      腾讯智慧视觉分析系统

      腾讯即视智慧视觉分析系统(腾讯即视)是一款结合物联网技术和 AI 分析技术的智慧视觉分析系统。通过与智慧建筑平台微瓴对接,提供从事前预警、事中告警到事后回溯的全链条服务。广泛应用于楼宇、园区、养老院等多个场景。

    相关资讯

    热门标签

    扫码关注腾讯云开发者

    领取腾讯云代金券