首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

解码HID描述符以匹配原始HID数据

是指将HID(Human Interface Device)描述符进行解析,以便与原始HID数据进行匹配和处理。

HID描述符是一种数据结构,用于描述HID设备的功能和属性。它包含了设备的报告描述符、输入输出端点的信息、设备的特性等。解码HID描述符可以帮助我们理解HID设备的功能和通信方式。

在解码HID描述符时,我们需要了解以下几个方面的内容:

  1. HID描述符的概念:HID描述符是一种二进制数据结构,用于描述HID设备的属性和功能。它由一系列的字段组成,每个字段都有特定的含义和格式。
  2. HID描述符的分类:HID描述符可以分为主描述符和报告描述符。主描述符包含了设备的基本信息,如厂商ID、产品ID等。报告描述符则描述了设备的输入输出报告格式和数据。
  3. HID描述符的优势:HID描述符提供了一种标准化的方式来描述HID设备,使得设备的功能和属性可以被统一理解和处理。通过解码HID描述符,我们可以更好地理解和使用HID设备。
  4. HID描述符的应用场景:HID描述符广泛应用于各种HID设备,如键盘、鼠标、游戏手柄等。通过解码HID描述符,我们可以实现对这些设备的控制和数据处理。

在腾讯云的产品中,与HID设备相关的产品包括物联网套件、边缘计算、云服务器等。物联网套件提供了丰富的物联网设备管理和数据处理能力,可以与HID设备进行连接和通信。边缘计算提供了离线计算和边缘设备管理的能力,可以用于处理HID设备的数据。云服务器则提供了强大的计算和存储能力,可以用于部署和运行与HID设备相关的应用程序。

更多关于腾讯云产品的信息,请访问腾讯云官方网站:https://cloud.tencent.com/

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 硬件笔记(6)----USB学习笔记3

    根据 USB 规范,设备端点是 USB 设备中一个独特的可寻址部分,它作为主机和设备间通信流的信息源或库。USB 枚举和配置一节介绍了设备向默认地址做出响应的步骤。枚举过程中,该事件在主机读取端点描述符等其他描述符信息之前发生。在该过程中,需要使用一套专用的端点用于与设备进行通信。这些专用的端点(统称为控制端点或端点 0)被定义为端点 0 IN 和端点 0 OUT。虽然端点 0 IN 和端点 0 OUT 是两个不同的端点,但对开发者来说,它们的构建和运行方式是一样的。每一个 USB 设备都需要支持端点 0。因此,该端点不需要使用独立的描述符。 除了端点 0 外,特定设备所支持的端点数量将由各自的设计要求决定。简单的设计(如鼠标)可能仅要一个 IN 端点。复杂的设计可能需要多个数据端点。USB 规范对高速和全速设备的端点数量进行了限制,即每个方向最多使用 16 个端点(16 个 IN、16 个 OUT,总共为 32 个),其中不包含控制端点 0 IN 和 0 OUT 在内。低速设备仅能使用两个端点。USB 类设备可对端点数量设定更严格的限制。例如,低速人机界面设备(HID)设计的端点可能不超过两个 — 通常有一个 IN 端点和一个 OUT 端点。数据端点本身具有双向特性。只有对它们进行配置后才支持单向传输(具有单向特性)。例如,端点 1 可作为 IN 或 OUT 端点使用。设备的描述符将正式使其成为一个 IN 端点。 各端点使用循环冗余校验(CRC)来检测传输中发生的错误。CRC 是一个用于检测错误的计算值。USB 规范中对实际的计算公式进行了解释,这些计算由 USB 硬件进行,这样可确保能够发出正确的响应。数据操作的接收方对数据进行 CRC 检查。如果两者匹配,那么接收方将发出一个 ACK。如果两者匹配失败,便不会发出任何握手数据包。在这种情况下,发送方将重新发送数据。 USB 规范定义了四种端点,并根据类型以及所支持的设备速度限制了数据包的尺寸。根据设计要求,开发者使用端点描述符指出端点类型以及数据包最大尺寸。四种端点和各自的特性如下:

    03

    SuperLine3D:从3D点到3D线

    这个工作来自于浙江大学和DAMO academy。在点云配准领域,尽管已经有很多方法被提出来,但是无论是传统方法,还是近年来蓬勃发展的基于深度学习的三维点云配置方法,其实在真正应用到真实的LiDAR扫描点云帧时都会出现一些问题。造成这种困窘的一个主要的原因在于LiDAR扫描到的点云分布极不均匀。具体而言,相较于RGBD相机,LiDAR的有效扫描深度要大很多。随着深度的增大,其激光发射出去的扇面将会变得稀疏。因此,即使是扫描同一目标或场景的点云帧之间,其尺度并不一致。导致想要研究的关键点周围的邻域点分布也存在较大不同,难以通过这些3D点的特征描述关联起点云帧。这个问题一直以来都十分棘手。这个工作独辟蹊径,提出对于这种点云数据,不再通过3D点来构建关联以实现点云配准,而是研究点云数据中的高层次的几何原语。这种做法直观来说是有道理的,因为这些高层次的几何原语通常会有较大的支撑点集,换句话说,其对于点云扫描和采样具有较大的鲁棒性,通常不会因为某个点没有被记录而影响相应几何原语的提取。同时,几何原语通常具有更具体的特征和几何结构,例如一条直线、一个平面等,其更容易构建不同帧间的关联,避免误匹配。但是,这种研究思路通常难度较大,原因在于缺乏足够的有标签的数据集。在这种情况下,这个工作显得极其重要,它不仅仅提供了一个数据集自动标注模型,同样也是少数真正开始探索几何原语用于点云配准任务的先河性的工作。

    02

    硬件笔记(8)----USB学习笔记5

    如前面所述,当某个设备被连接到 USB 主机上,该设备会向主机提供其功能和电源要求。通常,设备会通过一个描述符表格(其固件的一部分)来提供这些信息。描述符表格是数据的结构化序列,描述了设备信息;这些值由开发人员定义。所有描述符表格都具有一个标准信息,用于介绍设备属性和电源要求。如果某个设计满足指定 USB 设备类别的要求,则该 USB 设备必须具备的其他描述符信息都将包含在设备描述符结构中。附录 A 包含一个 PSoC USB 的全功能设备描述符的示例。如果您正在阅读或创建您自己的描述符,那么请注意,传输数据字段时,优先传输最低有效位。许多参数的长度均为 2个字节。请确保先发送低字节,然后再发送高字节。

    02

    YOLOPoint开源 | 新年YOLO依然坚挺,通过结合YOLOv5&SuperPoint,成就多任务SOTA

    关键点通常是指Low-Level 的Landmark,如点、角点或边缘,它们可以从不同的视角轻松检索。这使得移动车辆能够估计其相对于周围环境的位置和方向,甚至可以使用一个或多个相机执行闭环(即同时定位与地图构建,SLAM)。在历史上,这项任务是通过手工设计的特征描述子来完成的,如ORB,SURF,HOG,SIFT。然而,这些方法要么不支持实时处理,要么在光照变化、运动模糊等干扰下表现不佳,或者检测到的关键点是聚集成簇而不是在图像中分散,这降低了姿态估计的准确性。学习到的特征描述子旨在解决这些问题,通常通过以随机亮度、模糊和对比度的形式进行数据增强。

    01

    ORB 特征

    ORB 是 Oriented Fast and Rotated Brief 的简称,可以用来对图像中的关键点快速创建特征向量,这些特征向量可以用来识别图像中的对象。 其中,Fast 和 Brief 分别是特征检测算法和向量创建算法。ORB 首先会从图像中查找特殊区域,称为关键点。关键点即图像中突出的小区域,比如角点,比如它们具有像素值急剧的从浅色变为深色的特征。然后 ORB 会为每个关键点计算相应的特征向量。ORB 算法创建的特征向量只包含 1 和 0,称为二元特征向量。1 和 0 的顺序会根据特定关键点和其周围的像素区域而变化。该向量表示关键点周围的强度模式,因此多个特征向量可以用来识别更大的区域,甚至图像中的特定对象。 ORB 的特点是速度超快,而且在一定程度上不受噪点和图像变换的影响,例如旋转和缩放变换等。

    01
    领券