首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R语言怎么计算两个比值的 p 值?

有朋友问两个比值数据,怎么求他们的 p 值? 例如,两组人,分别接受两种药物治疗,想知道疗效之间是否有差异,计算 p 值。 接受药物 1 治疗,30 人,其中 20 人有疗效,10 人没有疗效。...直观上判断,药物 1 的疗效要好(20:10 vs 10:20),但与药物 2 的疗效相比,是否达到了显著性的差异了呢?...13.467843 ## sample estimates: ## odds ratio ## 3.901234 可以看到,p 值 = 0.01938,如果显著性阈值定为 0.05,则两种药物的疗效达到了统计学意义的上差异...另外判断差异时,不仅要看 p 值,还要看 OR 值,这里的 OR 值 = 3.901234,其 95 % 置信区间为 1.212812 - 13.467843,是有意义的。...OR 的置信区间不能跨过 1,否则 p 值再小也无意义。

81010

R语言怎么计算两个比值的 p 值?

有朋友问两个比值数据,怎么求他们的 p 值? 例如,两组人,分别接受两种药物治疗,想知道疗效之间是否有差异,计算 p 值。 接受药物 1 治疗,30 人,其中 20 人有疗效,10 人没有疗效。...直观上判断,药物 1 的疗效要好(20:10 vs 10:20),但与药物 2 的疗效相比,是否达到了显著性的差异了呢?...13.467843 ## sample estimates: ## odds ratio ## 3.901234 可以看到,p 值 = 0.01938,如果显著性阈值定为 0.05,则两种药物的疗效达到了统计学意义的上差异...另外判断差异时,不仅要看 p 值,还要看 OR 值,这里的 OR 值 = 3.901234,其 95 % 置信区间为 1.212812 - 13.467843,是有意义的。...OR 的置信区间不能跨过 1,否则 p 值再小也无意义。

7110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【科学计算包NumPy】NumPy数组的创建

    NumPy 是在1995年诞生的 Python 库 Numeric 的基础上建立起来的,但真正促使 NumPy 的发行的是 Python 的 SciPy 库。...科学计算包 NumPy 是 Python 的一种开源的数值计算扩展库。它包含很多功能,如创建 n 维数组(矩阵)、对数组进行函数运算、数值积分等。...NumPy 的诞生弥补了这些缺陷,它提供了两种基本的对象: ndarray :是储存单一数据类型的多维数组。 ufunc :是一种能够对数组进行处理的函数。   ...NumPy 常用的导入格式: import numpy as np 一、创建数组对象   通常来说, ndarray 是一个通用的同构数据容器,即其中的所有元素都需要相同的类型。...产生在 [0,1) 中均匀分布的随机数 (二)分布函数 下面四个与分布有关,其中前两个分布函数是后两个的简化形式。

    11100

    数组计算模块NumPy

    NumPy是Python数组计算、矩阵运算和科学计算的核心库。...提供了高性能的数组对象 提供了大量的函数和方法 NumPy使用机器学习中的操作变得简单 NumPy是通过C语言实现的 NumPy的安装  pip install numpy  数组的分类 一维数组 跟Python...列表的形状一样,区别在于数组的切片是针对原始数组 二维数组 以数组作为数组元素,二维数组包括行和列,类似于表格,又称为矩阵  三维数组(多维数组) 为数为三的数组元素,也称矩阵列表 轴的概念  :轴是NumPy...方法实现  数组的增加 水平方向增加数据 hstack()函数 垂直方向增加数据 vstack()函数  数组的删除 使用delete()函数  矩阵 矩阵是数学的概念,而数组是计算机程序设计领域的概念...在NumPy中,矩阵是数组的分支,二维数组也称为矩阵 。

    8710

    【科学计算包NumPy】NumPy数组的基本操作

    一、数组的索引和切片 (一)数组的索引 首先,导入 NumPy 库。 import numpy as np 一维数组的索引与 Python 列表的索引用法相同。...三、数组的运算 (一)数组和标量间的运算 数组之所以很强大是因为不需要通过循环就可以完成批量计算。...(2)如果两个数组的形状在任何一个维度上都不匹配,那么数组的形状会沿着维度为 1 的维度进行扩展,以匹配另一个数组的形状。 (3)输出数组的 shape 是输入数组 shape 的各个轴上的最大值。...(4)如果两个数组的形状在任何一个维度上都不匹配,并且没有任何一个维度等于 1 ,则引发异常。...几乎所有的统计函数在针对二维数组的时候需要注意轴的概念。axis=0 时表示沿着纵轴进行计算,axis=1 时沿横轴进行计算。

    12210

    Python-Numpy数组计算

    参考链接: Python中的numpy.greater 一、NumPy:数组计算  1、NumPy是高性能科学计算和数据分析的基础包。它是pandas等其他各种工具的基础。...)               计算绝对值 numpy.square(array)                 计算各元素的平方 等于array**2 numpy.log/log10/log2(array...)         计算各元素的各种对数 numpy.sign(array)                   计算各元素正负号 numpy.isnan(array)                 ...计算各元素是否为NaN numpy.isinf(array)                  计算各元素是否为NaN numpy.cos/cosh/sin/sinh/tan/tanh(array) 三角函数...numpy.modf(array)                   将array中值得整数和小数分离,作两个数组返回 numpy.ceil(array)                   向上取整

    2.4K40

    java计算两个数组的交集_回顾面试题:计算两个数组交集

    参考链接: Java程序计算两组的交集 背景  工作多年,语言经历过C#,JAVA。...,数组元素无序且有可能存在重复元素,请输出两个数组的交集。原题大意是这样,细节可能有出入。  ...思路如下:  排序原数组  选择数组元素小的数组去与大数组做比较  验证上面的指针比较法  比如有这样的两个数组:  具体的做法如下:  排序数组  初始化两数组的指针,均从0开始  将小数组的指针做为外层循环...但它只能处理对象类型的Integer,所以我们先要将int[] 转换成Integer[],然后利用addAll以及retailAll来计算数组的交集。  ...,比较的数组元素扩大到随机生成的10000个int)  将原数组进行排序,然后将数组加入到队列中,拿元素个数较小的做为循环条件,比较两个队列peek数值。

    1.3K20

    如何连接两个二维数字NumPy数组?

    Python 是一种通用且功能强大的编程语言,广泛用于科学计算、数据分析和机器学习。使Python对这些领域如此有用的关键库之一是NumPy。...NumPy提供了强大的工具来处理数组,这对于许多科学计算任务至关重要。在本文中,我们将探讨如何使用 Python 连接两个二维 NumPy 数组。...在本教程中,我们将向您展示如何使用两种不同的方法在 Python 中连接两个二维 NumPy 数组。所以让我们开始吧! 如何连接两个二维数字数组?...串联是将两个或多个字符串、数组或其他数据结构组合成单个实体的过程。它涉及将两个或多个字符串或数组的内容连接在一起以创建新的字符串或数组。 有多种方法可以连接两个二维 NumPy 数组。...我们提供了每种方法的示例,演示了如何使用这些函数水平和垂直连接两个二维数组。这些方法对于在科学计算、数据分析和机器学习任务中组合数组和处理大量数据非常有用。

    21130

    Numpy统计计算、数组比较,看这篇就够了

    此前,我们在《玩数据必备Python库:Numpy使用详解》一文中介绍了利用Numpy进行矩阵运算的方法,本文继续介绍Numpy的统计计算及其他科学运算的方法。...作者:魏溪含 涂铭 张修鹏 01 Numpy的统计计算方法 NumPy内置了很多计算方法,其中最重要的统计方法及说明具体如下。...sum():计算矩阵元素的和;矩阵的计算结果为一个一维数组,需要指定行或者列。 mean():计算矩阵元素的平均值;矩阵的计算结果为一个一维数组,需要指定行或者列。...max():计算矩阵元素的最大值;矩阵的计算结果为一个一维数组,需要指定行或者列。 mean():计算矩阵元素的平均值。 median():计算矩阵元素的中位数。...数组比较 Numpy有一个强大的功能是数组或矩阵的比较,数据比较之后会产生boolean值。

    3.5K30

    Python-科学计算-numpy-2-数组(中篇)

    系统:Windows 10 Python: 2.7.9/numpy: 1.9.1 这个系列是教材《Python科学计算(第2版)》的学习笔记 今天讲讲如何从原数组经过下标存取获得新数组 > 写在前面的话...---- 近来学习的有点卡壳,尤其涉及到对数组的广播处理之后的部分 当数组的维度变高以后,就开始有点晕了-_-!...期待下周的时候突破这个瓶颈 当然这不影响本期的分享内容 Part 1:学习目标 本次旨在通过对原数组进行下标存取后获得想要的新数组 下标存取有:切片,整数列表,整数数组,布尔数组 这四种方法获得新数组是有区别的...使用这些之前不要忘记导入import numpy as np 切片结果 ?...Part 4:是否共享内存 切片方法获得的新数组与原数组共享内存,即新数组只是原数组的一个视图,所以任何一个数组改变,两者都改变 整数数组下标存取新数组与原数组不共享内存,任何一个数组发生新的改变不会影响彼此

    50210

    Python-科学计算-numpy-1-数组(上篇)

    系统:Windows 10 Python: 2.7.9/numpy: 1.9.1 这个系列是教材《Python科学计算(第2版)》的学习笔记,欢迎大家共同学习切磋(不是广告-_-!)...今天讲讲前言和numpy的数组 要求:了解Python的基本语法 Part 1:教材介绍 书名:《Python科学计算(第2版)》 作者:张若愚 本书介绍了Python科学计算领域常用库:Numpy,Scipy...Part 4:numpy介绍 numpy是Python科学计算的基础库,很多其余的库在它的基础上进行的 数组是numpy整个库的核心 使用numpy库之前,首先必须要导入 import numpy as...np Part 5:numpy-数组 ---- 使用np.array()直接创建数组 一维数组:a=np.array([1,2,3,4]) 二维数组:b=np.array([[1,2,3,4],[5,6,7,8...]]) 注意中括号的使用,一维数组只有一个中括号,多维数组外围有一个中括号,每一维有一个中括号,不同维度间用逗号分隔 运行结果(Ipython Notebook) ?

    55110

    【实验楼-Python 科学计算】Numpy - 多维数组(上)

    创建 numpy 数组 初始化numpy数组有多种方式,比如说: 使用 Python 列表或元祖 使用 arange, linspace 等函数 从文件中读取数据 列表生成numpy数组 我们使用 numpy.array...模块提供的 ndarray 类型 type(v), type(M) => (numpy.ndarray'>,numpy.ndarray'>) v 与 M 数组的不同之处在于它们的维度...Numpy 数组是 静态类型 并且 齐次。 元素类型在数组创建的时候就已经确定了。 Numpy 数组节约内存。...使用 ndarray 的 dtype 属性我们能获得数组元素的类型: M.dtype=> dtype('int64') 当我们试图为一个 numpy 数组赋错误类型的值的时候会报错: M[0,0] =...文件 I/O 创建数组 CSV CSV是一种常用的数据格式化文件类型,为了从中读取数据,我们使用 numpy.genfromtxt 函数。

    1.5K20

    初探numpy——数组的创建

    方法创建数组 numpy.empty方法可以创建一个指定形状、数据类型且未初始化的数组 numpy.empty(shape , dtype = float , order = 'C') 参数 描述 shape...方法创建数组 numpy.zeros方法可以创建一个指定大小的数组,数组元素以0来填充 numpy.zeros(shape , dtype = float , order = 'C') 参数 描述 shape...使用numpy.ones方法创建数组 numpy.ones方法可以创建一个指定大小的数组,数组元素以1来填充 numpy.ones(shape , dtype = float , order = 'C'...方法创建数组 numpy.linspace用于创建一个一维等差数列的数组 numpy.linspace(start , stop, num=50 , endpoint=True , retstep =...方法创建数组 numpy.linspace用于创建一个一维等比数列的数组 numpy.linspace(start , stop , num = 50 , endpoint = True , base

    1.7K10

    Numpy中的数组维度

    ., 23) 进行重新的排列时,在多维数组的多个轴的方向上,先分配最后一个轴(对于二维数组,即先分配行的方向,对于三维数组即先分配平面的方向) # 代码 import numpy as np # 一维数组...a = np.arange(24) print("a的维度:\n",a.ndim) # 现在调整其大小,2行3列4个平面 b = np.reshape(np.arange(24), (2, 3, 4)...) # b 现在拥有三个维度 print("b(也是三维数组):\n",b) # 分别看看每一个平面的构成 print("b的每一个平面的构成:\n") print(b[:, :, 0]) print(...b[:, :, 1]) print(b[:, :, 2]) print(b[:, :, 3]) # 运行结果 a的维度: 1 b(也是三维数组): [[[ 0 1 2 3] [ 4 5...6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]] b的每一个平面的构成: [[ 0 4 8] [

    1.6K30

    【NumPy 数组过滤、NumPy 中的随机数、NumPy ufuncs】

    python之Numpy学习 NumPy 数组过滤 从现有数组中取出一些元素并从中创建新数组称为过滤(filtering)。 在 NumPy 中,我们使用布尔索引列表来过滤数组。...随机数并不意味着每次都有不同的数字。随机意味着无法在逻辑上预测的事物。 伪随机和真随机 计算机在程序上工作,程序是权威的指令集。因此,这意味着必须有某种算法来生成随机数。...为了在我们的计算机上生成一个真正的随机数,我们需要从某个外部来源获取随机数据。外部来源通常是我们的击键、鼠标移动、网络数据等。...ufunc 用于在 NumPy 中实现矢量化,这比迭代元素要快得多。 它们还提供广播和其他方法,例如减少、累加等,它们对计算非常有帮助。...对两个列表的元素进行相加: list 1: [1, 2, 3, 4] list 2: [4, 5, 6, 7] 一种方法是遍历两个列表,然后对每个元素求和。

    13210

    Numpy的轴及numpy数组转置换轴

    前言: 在现代数据科学和机器学习领域,NumPy成为了Python中最为强大和广泛使用的科学计算库之一。它提供了高性能的多维数组对象,以及用于处理这些数组的各种数学函数。...让我们深入探讨NumPy数组的轴以及如何通过转置操作来灵活地操控数据,为您的科学计算和数据分析工作提供更为精细的控制。...2, 3 ]) 和 ([ 4, 5, 6 ]) 这两个1维数组。...[ 1, 2, 3 ]) 和 ([ 4, 5, 6 ]) 这两个1维数组 第2个参数就是1维(1轴),1: 表示切取1维(1轴)上的索引 [ 1 ] 和索引 [ 2 ] ,即对数组 ([ 1, 2,...通过掌握NumPy中轴的灵活运用,您将能够更自如地操控数据流,处理复杂的统计分析,以及更好地适应不同任务的需求。希望这篇文章能够为您提供清晰而深入的理解,使您在日常数据处理和科学计算中更为得心应手。

    23110

    【Python科学计算】使用NumPy水平组合数组和垂直组合数组

    1 水平数组组合 通过hstack函数可以将2个或多个数组水平组合起来形成一个数组,那么什么叫数组的水平组合呢?下面先看一个例子。 现在有两个3*2的数组A和B。...数组A 0 1 2 3 4 5 数组B 6 7 8 4 1 5 现在使用hstack函数将两个数组水平组合的代码如下。 hstack(A,B) hstack函数的返回值就是组合后的结果。...下面的例子通过reshape方法以及乘法运行创建了3个二维数组(行数相同),然后使用hstack函数水平组合其中的两个或三个数组。...图1 水平组合数组 2 垂直数组组合 通过vstack函数可以将2个或多个数组垂直组合起来形成一个数组,那么什么叫数组的垂直组合呢?下面先看一个例子。 现在有两个3*2的数组A和B。...数组A 0 1 2 3 4 5 数组B 6 7 8 4 1 5 现在使用vstack函数将两个数组垂直组合的代码如下。 vstack(A,B) vstack函数的返回值就是组合后的结果。

    1.4K30

    【震惊】padding-top的百分比值参考对象竟是父级元素的宽度

    padding 属性用于设置元素的内边距,其值可以是length、inherit,当然也可以是百分比。...今天为什么会聊到padding-top设置百分比时的参考对象这个话题呢,这还要从一道不那么正经的面试题说起~ 一道不那么正经的css布局面试题 在对面,一本正经的面试官和蔼可亲的说道:我们来道简单的面试题...*/ width: 100vw; /* calc方法动态计算:height的值为宽度的1/2,所以是 (100vw - 20px) / 2 */ height: calc...探究padding-top的秘密 当padding-top的值为百分比时,参考的对象是父级元素的宽度 这句话圈起来,是重点,要考~ 的影响 */ width: 100%; height: 0; /* calc方法动态计算:padding-top的值为父级容器宽度的1/2,所以是

    1.7K10
    领券