作者:Python数据科学 大家都知道一线城市生活压力大,年轻人如果没有家里人的帮助想要独立扎根并非易事。...如果不仔细分析的话,按照表面的逻辑陷阱计算利率就是:411.6/5488=7.5%,也就是说年利率是7.5%,每期手续费率=7.5%/12=0.625%。...实际利率计算是有现成公式的,这个涉及到货币时间价值的一些知识,公式计算如下: ? 其中,P为本金,F为每期现金流,r为月利率(内部收益率IRR)。...有公式就好办了,Python的numpy有现成的IRR计算公式,分分钟搞定。...所以你看到了吧,实际的年化利率是14.44%,而不是7.5%。因此按照这个逻辑我也给他分别计算了消费分期3期和6期的实际年化利率。 ? 卖家搞活动,因此3期手续费为零。
央行提供了两种选择,一种是固定利率;一种是浮动利率。本文只说浮动利率。...调整后2020年的执行利率和2019年的持平,以后将根据(每年)重定价日的LPR重新计算。...具体计算过程,需要考虑到每笔房贷的上浮或者优惠的不同,先要根据2019年12月的LPR和当前执行利率之差计算出一个加点,这个加点在整个贷(还)款期限内就固定不变了。...如果重定价周期商定为一年,那么2021年及以后每年的实际执行利率就按照重定价日最近一个月的LPR加上这个固定加点计算。...先用一个公式来表示新的利率浮动比例的计算 加点 / LPR 从房奴的角度,我们总是希望这个比例至少有不差于现在上浮或者优惠的程度。
index也有列索引columns,创建DataFrame的基本方法为df = pd.DataFrame(data, index=index,columns=columns),其中data参数的数据类型可以支持由列表...如下图所示,基本上可以把DataFrame看成是Excel的表格形态: ? 接下来我们根据创建DataFrame的基本要求将data、index、columns这三个参数准备就绪。...的方法中,就可以生成DataFrame格式的股票交易数据。...此处以ndarray组成的字典形式创建DataFrame,字典每个键所对应的ndarray数组分别成为DataFrame的一列,共享同一个 index ,例程如下所示: df_stock = pd.DataFrame...以上就是Pandas的核心—DataFrame数据结构的生成讲解。
DataFrame是pandas库中另一个重要的数据结构,它提供了类似于excel的二维数据结构使用pandas.DataFrame()函数可以创建一个DataFrame数据类型【用数组创建DataFrame...】import pandas as pdimport numpy as npa=np.random.uniform(0,150,size=(5,3)).astype('int32')df=pd.DataFrame...(a)df我们首先使用random.uniform生成了一个5*3的矩阵a,它的每个元素是0~150的随机数然后用DataFrame()函数把矩阵a转换为DataFrame类型可以看到,在jupyter...中,dataframe的显示非常直观,上面第一行是它的列索引(默认为0,1,2)左边第一列是它的行索引(默认为0,1,2,3,4)中间的区域是我们的数据DataFrame跟series类似,可以使用index...(a,index=line,columns=columns)df【用字典创建DataFrame】pandas还支持字典创建DataFrame字典的键(key)将作为列索引,值(value)将作为一个个数据
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.i...
7 True 我们通过逻辑运算获取了对应的布尔值,只需要将布尔值作为索引就可以获得对应的元素 sci[sci['Age']>age_mean] Series 的运算 Series和数值型变量计算时...,变量会与Series中的每个元素逐一进行计算 两个Series之间计算,如果Series元素个数相同,则将两个Series对应元素进行计算 sci['Age']+sci['Age'] # age列值增加一倍...元素个数不同的Series之间进行计算,会根据索引进行 索引不同的元素最终计算的结果会填充成缺失值,用NaN表示.NaN表示Null DataFrame常用属性方法 ndim是数据集的维度 size...是数据集的行数乘列数 count统计数据集每个列含有的非空元素 也可以利用布尔索引获取某些元素(使用逻辑运算获取最小值) 更改Series 和DataFrame 通过set_index()方法设置行索引名字... 修改列名(columns) 和 行索引(index)名: 1.通过rename()方法对原有的行索引名和列名进行修改 2.将index 和 columns属性提取出来,修改之后,再赋值回去 3.通过dataframe
mongodb取出json,利用python转成dataframe(dict-to-dataframe) 1、mongodb数据源结构: 2、输出结果: 3、python代码部分...db.gaode_pois_hotel_yunnan_extra_mid01.find({},{"_id":0,'name':1,'lng':1,'lat':1}).limit(10) #创建一个空的dataframe...df = pd.DataFrame(columns = ["_id", "name", "lng", "lat"]) for x in data2:...#dict转成dataframe,注意.T的运用 pd_data=pd.DataFrame.from_dict(x,orient='index').T
参考链接: 带有Pandas的Python:带有示例的DataFrame教程 Python是进行数据分析的一种出色语言,主要是因为以数据为中心的python软件包具有奇妙的生态系统。...Pandas dataframe.ne()函数使用常量,序列或其他按元素排列的 DataFrame 检查 DataFrame 元素的不等式。...用法: DataFrame.ne(other, axis=’columns’, level=None) 参数: other:系列,DataFrame或常量 axis:对于系列输入,轴与系列索引匹配...一个 DataFrame 包含NA值。 ...":[14,3,None,2,6]}) # Print the second dataframe df2 让我们使用dataframe.ne()功能。
mongodb取出json,利用python转成dataframe(dict-to-dataframe) 1、mongodb数据源结构: ? 2、输出结果: ?...3、python代码部分 import pandas as pd from pymongo import MongoClient #1. get data from mongodb class extra_yunnan_hotel...db.gaode_pois_hotel_yunnan_extra_mid01.find({},{"_id":0,'name':1,'lng':1,'lat':1}).limit(10) #创建一个空的dataframe...df = pd.DataFrame(columns = ["_id", "name", "lng", "lat"]) for x in data2:...#dict转成dataframe,注意.T的运用 pd_data=pd.DataFrame.from_dict(x,orient='index').T
FV 是一个财务函数,用于根据固定利率计算投资的未来值。 语法:FV(rate,nper,pmt,[pv],[type]) rate:必需。各期利率。 nper:必需。年金的付款总期数。...如果贷款为期四年(年利率 12%),每月还一次款,则 rate 应为 12%/12,nper 应为 4*12。如果对相同贷款每年还一次款,则 rate 应为 12%,nper 应为 4。...计算一系列付款的未来值。比如:你每月存500美元用于退休养老金,预期的平均年利率5%,期限为10年。到期后,你的退休账户中将会有77,641.14美元。...计算当个总计付款的未来值。比如:你投资了某个项目,投资额为10000美元,预计平均年回报率为2%,按月分红。投资期限是5年,到期后你可以拿到11050.79美元。...如果type取1,未来值的计算结果不变。
本文是基于Windows系统环境,学习和测试DataFrame模块: Windows 10 PyCharm 2018.3.5 for Windows (exe) python 3.6.8...初始化DataFrame 创建一个空的DataFrame变量 import pandas as pd import numpy as np data = pd.DataFrame() ...print(np.shape(data)) # (0,0) 通过字典创建一个DataFrame import pandas as pd import numpy as np dict_a...n = np.array(df) print(n) DataFrame增加一列数据 import pandas as pd import numpy as np data = pd.DataFrame...('user.csv') print (data) 将DataFrame数据写入csv文件 to_csv()函数的参数配置参考官网pandas.DataFrame.to_csv import
银行定期存款利率,输入金额,输入年限,计算本息总额 //导包 import java.util.Scanner; public class Test { public static void...存款年利率表如下: //存期 年利率(%) //一年 2.25 //两年 2.7 //三年 3.25 //五年...3.6 //请存入一定金额(1000起存),存一定年限(四选一),计算到期后得到的本息总额 //本息计算方式:本金+本金×年利率×年限 //创建键盘输入对象...int year = scan.nextInt(); //定义一个double类型的变量 用来储存本息总额 double amount = 0; //计算本息
自定义生成行索引 使用 索引与值 基本操作 统计功能 ---- 基本特征 一个表格型的数据结构 含有一组有序的列(类似于index) 大致可看成共享同一个index的Series集合 创建 DataFrame...与Series相比,除了可以每一个键对应许多值之外,还增加了列索引(columns)这一内容,具体内容如下所示: 自动生成行索引 DataFrame也能自动生成行索引,索引从0开始,代码如下所示...frame = pd.DataFrame(data) #自定义行索引 print(frame) 运行结果如下所示: name pay 0 aaaaaa 4000 1 bbbbbb... 5000 2 cccccc 6000 自定义生成行索引 DataFrame除了能创建自动生成行索引外,还能自定义生成行索引,代码如下所示: import pandas as...对象的修改和删除还有很多方法,在此不一一列举,有兴趣的同学可以自己去找一下 统计功能 DataFrame对象成员找最低工资和高工资人群信息 DataFrame有非常强大的统计功能,它有大量的函数可以使用
python代码报错: 'DataFrame' object has no attribute 'explode' 原因是pandas版本低于0.25,在0.25以上才有explode函数,所一不想升级的可以自己拆分...没有explode 原始数据: import pandas as pd df = pd.DataFrame({'country': ['China,US,Japan', 'Japan,EU,Australia
可以访问DataFrame全部的行索引,DataFrame.columns可以访问DataFrame全部的列索引 我们用DataFrame.axes查看交易数据行和列的轴标签基本信息,DataFrame.axes...等价于DataFrame.index结合DataFrame.columns 2.行/列元素访问 DataFrame.values可以访问DataFrame全部元素数值,以numpy.ndarray数据类型返回...某列内容访问可以通过类似字典标记或属性的方式,比如DataFrame[‘Open’]或是DataFrame.Open方式,返回得到的’Open’列元素其实是Series数据结构(类似数组) 某行内容可以用切片式访问...,比如访问从索引0开始的第一行元素,我们使用DataFrame[0:1]方式,返回得到的元素是DataFrame数据结构 3.元素级的访问 元素级访问有三种: loc是通过标签方式选取数据,iloc是通过位置方式选取数据...1.DataFrame.iloc[0:2]选取前两行所有列元素, 2.DataFrame.iloc[0:2,0:1]选取前两行第一列元素 3.DataFrame.iloc[[0,2],[0,1]]选取
Python之Pandas中Series、DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签...4. pandas的主要Index对象 Index 最泛化的Index对象,将轴标签表示为一个由Python对象组成的NumPy数组 Int64Index 针对整数的特殊Index MultiIndex...操作Series和DataFrame中的数据的基本手段 5.1 重新索引 reindex 5.2 丢弃指定轴上的项 drop 5.3 索引、选取和过滤(.ix) 5.4 算数运算和数据对齐 DataFrame...和Series之间的算数运算默认情况下会将Series的索引项 匹配到DataFrame的列,然后沿着行一直向下广播。...汇总和计算描述统计 8.1 相关系数corr与协方差cov 8.2 成员资格isin,用于判断矢量化集合的成员资格,可用于选取Series或DataFrame列数据的子集。 9.
实际年化利率 我们用网上常见的房贷/借款计算器来算一下, 如果按照年化11.54%来计算, 每月的还款情况应该如下, 即每个月只需要等额本息还款886.34, 比929.51元少不少....而如果每个月还款929.51元的话, 其利率远远不止11.54%, 直接仍然用那个借款计算器大概估计一下....貌似现有的网上的工具都只能正向算, 即已知利率和贷款本金计算还款计划表, 没有一个工具能从每月还款额反推贷款利率, 初步多次尝试得到如下逼近的结果....推导方法 我们来正向推到一下这个等额本息利率的计算过程....通过计算得到, 借款10000元, 每月还款额度为929.51元的情况下, 月利率为0.017即1.7%, 年化利率即为 20.65% 基本上与文首查到的一致.
DataFrame简介: DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。...DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。...其实,DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。...导入基本python库: import numpy as np import pandas as pd DataFrame构造: 1:直接传入一个由等长列表或NumPy数组组成的字典; dict...参考资料:《利用Python进行数据分析》
df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]) df1 代码结果: 0 1 2 0 1.0 2.0 3.0 1 NaN NaN...df1 代码结果: 0 1 2 0 1.0 2.0 3.0 1 0.0 0.0 2.0 2 0.0 0.0 0.0 3 8.0 8.0 0.0 传入method=” “改变插值方式: df2=pd.DataFrame
摘选自董付国老师整理的300页pandas教学PPT,待时机成熟后再分享完整版。
领取专属 10元无门槛券
手把手带您无忧上云