首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数组计算模块NumPy

NumPy是Python数组计算、矩阵运算和科学计算的核心库。...提供了高性能的数组对象 提供了大量的函数和方法 NumPy使用机器学习中的操作变得简单 NumPy是通过C语言实现的 NumPy的安装  pip install numpy  数组的分类 一维数组 跟Python...列表的形状一样,区别在于数组的切片是针对原始数组 二维数组 以数组作为数组元素,二维数组包括行和列,类似于表格,又称为矩阵  三维数组(多维数组) 为数为三的数组元素,也称矩阵列表 轴的概念  :轴是NumPy...方法实现  数组的增加 水平方向增加数据 hstack()函数 垂直方向增加数据 vstack()函数  数组的删除 使用delete()函数  矩阵 矩阵是数学的概念,而数组是计算机程序设计领域的概念...在NumPy中,矩阵是数组的分支,二维数组也称为矩阵 。

8710

Python-Numpy数组计算

参考链接: Python中的numpy.greater 一、NumPy:数组计算  1、NumPy是高性能科学计算和数据分析的基础包。它是pandas等其他各种工具的基础。...)               计算绝对值 numpy.square(array)                 计算各元素的平方 等于array**2 numpy.log/log10/log2(array...)         计算各元素的各种对数 numpy.sign(array)                   计算各元素正负号 numpy.isnan(array)                 ...用a==a 只要返回False就能判断  十、NumPy:数学和统计方法  常用函数:  sum 求和cumsum 求前缀和mean 求平均数std 求标准差var 求方差min 求最小值max 求最大值...argmin 求最小值索引argmax 求最大值索引 十一、NumPy:随机数生成  随机数生成函数在np.random子包内 常用函数    rand 给定形状产生随机数组(0到1之间的数)randint

2.4K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【科学计算包NumPy】NumPy数组的创建

    科学计算包 NumPy 是 Python 的一种开源的数值计算扩展库。它包含很多功能,如创建 n 维数组(矩阵)、对数组进行函数运算、数值积分等。...NumPy 的诞生弥补了这些缺陷,它提供了两种基本的对象: ndarray :是储存单一数据类型的多维数组。 ufunc :是一种能够对数组进行处理的函数。   ...NumPy 常用的导入格式: import numpy as np 一、创建数组对象   通常来说, ndarray 是一个通用的同构数据容器,即其中的所有元素都需要相同的类型。...,表示想要创建的数组 dtype 接收 data-type ,表示数组所需的数据类型,未给定则选择保存对象所需的最小类型,默认为 None ndmin 接收 int ,制定生成数组应该具有的最小维数,...(一)通过random模块创建随机数组   在 NumPy.random 模块中,提供了多种随机数的生成函数。

    11100

    Numpy数组

    2. axis 轴 Numpy 中 axis = n 对应 ndarray 的第 nnn 层 [],从最外层的 axis = 0,逐渐往内层递增。 3....ndarray.ndim :数组维度数目 ndarray.size :数组所有元素数目 = 所有维度大小乘积 ndarray.shape :数组各个维度大小 4....广播机制 Numpy 两个数组的相加、相减以及相乘都是对应元素之间的操作,当两个数组的形状并不相同时,Numpy 采用广播机制扩展数组使得二者形状相同。...Numpy 广播机制原则: 数组维度不同,后缘维度(从末尾开始算起的维度)的轴长相符 image.png image.png 数组维度相同,其中一个轴长为 1 image.png 5....ndarray.sum() :计算数组中元素的累加和;若指定 axis = 选项,则将数组的那个维度 [] 压缩掉,即计算那个维度 [] 中的元素累加和。

    78910

    Numpy 结构数组

    和C语言一样,在NumPy中也很容易对这种结构数组进行操作。 只要NumPy中的结构定义和C语言中的定义相同,NumPy就可以很方便地读取C语言的结构数组的二进制数据,转换为NumPy的结构数组。...在NumPy中可以如下定义: import numpy as np persontype = np.dtype({'names':['name', 'age', 'weight'],'formats':...: >>> a[0]["name"] 'Zhang' 我们不但可以获得结构元素的某个字段,还可以直接获得结构数组的字段,它返回的是原始数组的视图,因此可以通过修改b[0]改变a[0][''age'']...因此如果numpy中的所配置的内存大小不符合C语言的对齐规范的话,将会出现数据错位。...为了解决这个问题,在创建dtype对象时,可以传递参数align=True,这样numpy的结构数组的内存对齐和C语言的结构体就一致了。

    87430

    Python Numpy 数组

    numpy模块提供了一种新的Python数据结构——数组(array),以及特定于该结构的函数工具箱。该模块还支持随机数、数据聚合、线性代数和傅里叶变换等非常实用的数值计算工具。...下面将学习如何创建不同形状的numpy数组,基于不同的源创建numpy数组,数组的重排和切片操作,添加数组索引,以及对某些或所有数组元素进行算术运算、逻辑运算和聚合运算。 1....创建数组 numpy数组比原生的Python列表更为紧凑和高效,尤其是在多维的情况下。但与列表不同的是,数组的语法要求更为严格:数组必须是同构的。...这意味着数组项不能混合使用不同的数据类型,而且不能对不同数据类型的数组项进行匹配操作。 创建numpy数组的方法很多。可以使用函数array(),基于类数组(array-like)数据创建数组。...为获得较高的效率,numpy在创建一个数组时,不会将数据从源复制到新数组,而是建立起数据间的连接。也就是说,在默认情况下,numpy数组相当于是其底层数据的视图,而不是其副本。

    2.4K30

    前缀和数组(算法)

    2.一维数组的前缀和 在处理数组区间和问题时,前缀和(Prefix Sum)是一个非常有效的工具,可以大大加快查询速度。下面详细解释如何预处理前缀和数组,并使用前缀和数组快速计算任意区间的元素和。...初始化 dp[0] = 0(这是为了方便计算从索引 1 开始的区间和)。 使用递推公式 dp[i] = dp[i - 1] + arr[i - 1] 来计算 dp 数组的每个元素。...给定一个区间 [l, r],我们可以利用预处理好的前缀和数组 dp 快速计算区间内所有元素的和。...这种方法的核心思想是通过前缀和来快速计算任意子数组的和,并利用哈希表来记录这些和出现的频率,从而高效地解决问题。 1. 哈希表的作用 哈希表(Hash Table)用于记录前缀和出现的频率。...遍历数组 arr,计算当前位置的前缀和 prefixSum[i]。 计算目标前缀和 target = prefixSum[i] - k。

    11810

    NumPy和数组

    1.NumPy是什么 NumPy(Numerical Python的缩写)是一个开源的Python科学计算模块,其中包含了许多实用的数学函数,用来处理数值型数据。...NumPy中有计算平均数、中位数等数学相关的内置函数,可以在代码中省去很多的循环语句,帮助我们更加快速和科学地进行计算 3....([[1,2],[4,5],[7,9],[11,12]]) # TODO 使用print()输出变量arr print(arr) 4.数组的相关计算 (1)数组和数进行计算 数组和数字进行运算的时候就会把这个数组里面的每一个元素都和这个数字进行相应的运算...6] [3 1 1]] print(arr-1) (2)相同形状的数组进行计算 这个就要求数组的形状相同,然后对应位置的元素进行计算 # 使用import导入numpy,并使用"np"作为该模块的简写...,有没有什么既可以使用索引,同时可以进行计算的结构呢:Pandas模块就有这个功能; (2)Pandas简介 pandas是一个基于NumPy的模块,它的功能在于数据的筛选清洗和处理,与NumPy模块相比

    5400

    数组的前缀和及查分数组

    1,前缀和主要适用场景是原始数组不会被修改的情况下,频繁查询某个区间的累加和。 这里就不写前缀和的代码了,就是用一个数组记录下原有数组的前缀和。...比如,prefix[i]就代表着nums[0…i-1]所有元素的累加和,如果我们想求区间nums[i…j]的累加和,只要计算prefix[j + 1] – prefix[i]即可,而不需要遍历整个区间求和...(需要注意的是使用场景是频繁查询某个区间的累加和,而不需要对原始数组进行频繁修改) 2,查分数组的主要适用场景是**频繁对原始数组的某个区间的元素进行增减。...**比如说,给定一个数组nums,要求给区间nums[2…6]全部加1,再给nums[3…9]全部减3,再给nums[0…4]全部加2,等等。...比如: nums: 8 5 9 6 1 diff: 8 -3 4 -3 -5 首先可以通过这个数组来还原原来的数组,也可以利用O(1)复杂度完成给nums[i…j]全部加val的操作。

    43020

    【NumPy 数组副本 vs 视图、NumPy 数组形状、重塑、迭代】

    python之numpy学习 NumPy 数组副本 vs 视图 副本和视图之间的区别 副本和数组视图之间的主要区别在于副本是一个新数组,而这个视图只是原始数组的视图。...视图返回原始数组。 NumPy 数组形状 数组的形状是每个维中元素的数量。 获取数组的形状 NumPy 数组有一个名为 shape 的属性,该属性返回一个元组,每个索引具有相应元素的数量。...NumPy 数组重塑 重塑意味着更改数组的形状。 数组的形状是每个维中元素的数量。 通过重塑,我们可以添加或删除维度或更改每个维度中的元素数量。...传递 -1 作为值,NumPy 将为您计算该数字。...这些功能属于 numpy 的中级至高级部分。 NumPy数组迭代 迭代意味着逐一遍历元素。 当我们在 numpy 中处理多维数组时,可以使用 python 的基本 for 循环来完成此操作。

    15710

    numpy入门-数组创建

    Numpy 基础知识 Numpy的主要对象是同质的多维数组。Numpy中的元素放在[]中,其中的元素通常都是数字,并且是同样的类型,由一个正整数元组进行索引。 每个元素在内存中占有同样大小的空间。...Numpy数组类的名字叫做ndarray,经常简称为array。要注意将numpy.array与标准Python库中的array.array区分开,后者只处理一维数组,并且功能简单。...Numpy功能 ndarray,⼀个具有⽮量算术运算和复杂⼴播能⼒的快速且节 省空间的多维数组。...ndmin:指定返回数组的最小维数 ndarray属性 ndarray.ndim:数组的轴数量 ndarray.shape:数组的形状。比如对于n行m列的矩阵,其shape形状就是(n,m)。...ndarray.data:包含数组实际元素的缓冲区 ndarray.flags: 数组对象的一些状态指示或标签 ---- 创建ndarray 一维或者多维数组 import numpy as np

    1.1K20

    Python-科学计算-numpy-1-数组(上篇)

    系统:Windows 10 Python: 2.7.9/numpy: 1.9.1 这个系列是教材《Python科学计算(第2版)》的学习笔记,欢迎大家共同学习切磋(不是广告-_-!)...今天讲讲前言和numpy的数组 要求:了解Python的基本语法 Part 1:教材介绍 书名:《Python科学计算(第2版)》 作者:张若愚 本书介绍了Python科学计算领域常用库:Numpy,Scipy...Part 4:numpy介绍 numpy是Python科学计算的基础库,很多其余的库在它的基础上进行的 数组是numpy整个库的核心 使用numpy库之前,首先必须要导入 import numpy as...np Part 5:numpy-数组 ---- 使用np.array()直接创建数组 一维数组:a=np.array([1,2,3,4]) 二维数组:b=np.array([[1,2,3,4],[5,6,7,8...]]) 注意中括号的使用,一维数组只有一个中括号,多维数组外围有一个中括号,每一维有一个中括号,不同维度间用逗号分隔 运行结果(Ipython Notebook) ?

    55110
    领券