首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

说说地图中的聚类

概述 虽然Openlayers4会有自带的聚类效果,但是有些时候是不能满足我们的业务场景的,本文结合一些业务场景,讲讲地图中的聚类展示。...需求 在级别比较小的时候聚类展示数据,当级别大于一定的级别的时候讲地图可视域内的所有点不做聚类全部展示出来。 效果 ? ? ?...对象; clusterField: 如果是基于属性做聚类的话可设置此参数; zooms: 只用到了最后一个级别,当地图大于最大最后一个值的时候,全部展示; distance:屏幕上的聚类距离...; data:聚类的数据; style:样式(组)或者样式函数 2、核心方法 _clusterTest:判断是否满足聚类的条件,满足则执行_add2CluserData,不满足则执行..._clusterCreate; _showCluster:展示聚类结果; 调用代码如下: var mycluster = new myClusterLayer

61230

热图中分组与聚类不匹配的问题

分组与聚类不匹配的问题,是没错,但不好解释的问题。 期待:tumor normal 各成一簇 实际上,不一定。...成一簇:说明画热图的基因在两个分组间有明显的表达模式 不成一簇:说明画热图的基因在两个分组间表达模式不是特别明显 换一组基因或者增删基因 可能改变聚类的结果。...分组和聚类是两件独立的事情,聚类是以样本为单位,而不是以分组为单位。每个样本属于那个分组的信息是已知的。...希望各成一簇,两个选择: 1.增删、换基因 2.取消聚类- cluster_cols = F a.前提:矩阵列的顺序是先tumor后normal,或者先normal后tumor i.不聚类时,热图列的顺序与矩阵列的顺序完全匹配...b.取消聚类后,没有各成一簇,说明,表达矩阵列的顺序是乱的 load("TCGA-CHOL.Rdata") load("TCGA-CHOL_DEG.Rdata") cg1 = rownames(DEG1

24910
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    量化投资里的无监督学习算法:聚类

    7个主要原因 此后我们还对他的另一篇论文进行了解读:《The 7 Reasons Most Econometric Investments Fail》,详见: 计量经济学应用量化投资失败的7个主要原因...3、在今天的推文中,我们将回顾了两种常见的聚类方法: 划分聚类 层次聚类 4、不同特征/相似度度量将导致不同的聚类: 关键是在拟订问题时要使结果具有经济意义和可解释性 2 什么是 1、聚类指根据一定的准则...机器学习中,聚类指按照一个标准,这个标准通常是相似性,把样本分成几份,使得相似程度高的聚在一起,相似程度低的互相分开。 2、聚类的方法很多,有基于分层的聚类,基于划分的聚类,基于密度的聚类。...一个自然的解决方案是在多个特征上对资产进行聚类,并让算法找到最优的聚类数量: 然后我们可以评估每个聚类的性能,并评估风险溢价是否具有统计学意义。 这种方法也适用于相对价值策略。 ?...特别是,估计的因子通常是: 无等级 不允许在不同的层次上进行交互 3、我们可以从一个知识图中得到一个Forward-Looking相关矩阵: ?

    1.4K20

    浅谈机器学习-分类和聚类的区别

    在我们的生活中,我们常常没有过多的去区分这两个概念,觉得聚类就是分类,分类也差不多就是聚类,下面,我们就具体来研究下分类与聚类之间在数据挖掘中本质的区别。...聚类 聚类的相关的一些概念如下 聚类指事先并不知道任何样本的类别标号,希望通过某种算法来把一组未知类别的样本划分成若干类别,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起...聚类的目标:组内的对象相互之间时相似的(相关的),而不同组中的对象是不同的(不相关的)。组内的相似性越大,组间差别越大,聚类就越好。...分类与聚类的比较 分类:有训练数据,且训练数据包含输入和输出(有监督学习),已知分类的类别(即训练数据的输出)。学习出一个模型,用该模型对未分好类(预测数据)的数据进行预测分类(已知的类别中)。...聚类需要解决的问题是将已给定的若干无标记的模式聚集起来使之成为有意义的聚类,聚类是在预先不知道目标数据库到底有多少类的情况下,希望将所有的记录组成不同的类或者说聚类,并且使得在这种分类情况下,以某种度量

    3K20

    各种聚类算法的介绍和比较「建议收藏」

    即聚类后同一类的数据尽可能聚集到一起,不同数据尽量分离。 2、聚类和分类的区别 聚类技术通常又被称为无监督学习,因为与监督学习不同,在聚类中那些表示数据类别的分类或者分组信息是没有的。...4、聚类算法有哪些类 二、算法介绍 1、基于层次的方法(Hierarchical methods) 1.1基本思想 层次聚类主要有两种类型:合并的层次聚类和分裂的层次聚类。...缺点:最重要是数据集大时结果容易局部最优;需要预先设定K值,对最先的K个点选取很敏感;对噪声和离群值非常敏感;只用于numerical类型数据;不能解决非凸(non-convex)数据。...缺点:聚类的结果与参数有很大的关系;DBSCAN用固定参数识别聚类,但当聚类的稀疏程度不同时,相同的判定标准可能会破坏聚类的自然结构,即较稀的聚类会被划分为多个类或密度较大且离得较近的类会被合并成一个聚类...7.2量子聚类: 受物理学中量子机理和特性启发,可以用量子理论解决聚类记过依赖于初值和需要指定类别数的问题。一个很好的例子就是基于相关点的 Pott 自旋和统计机理提出的量子聚类模型。

    6.4K25

    聊聊k-means聚类的原理和应用

    从上面的描述中,我们可以抽象出聚类方法的步骤: 随机从数据集中选择k个点作为我们聚类的中心点; 讲每个点分配到离它最近的类中心点,就形成了k类。...我们使用误差平方和作为聚类的目标函数,就要求我们最终选择均值为聚类中心点迭代的原则。 这样不端迭代,直到达到迭代次数或是类别不再发生变化,结束。 最终的聚类结果,如下图: ?...总结 如何区分k-means与knn: k-means是聚类算法,knn是有监督的分类算法;聚类没有标签,分类有标签 聚类算法中的k是k类,knn中的k是k个最近的邻居。...这个有相应的改进方法,包括k-means++和二分k-means。 算法本身的局限性:对于类似下面圆形的数据集,聚类效果很差,主要是算法原因。所以还有其他的聚类算法,比如基于密度的方法等。...不适合发现非凸形状的簇或者大小差别较大的簇; 对噪声和异常点比较敏感 ? 作者:求知鸟 来源:知乎

    1.4K21

    Wiztalk | 石川 Part 1 《基于图神经网络的聚类研究—表示学习和网络聚类》

    基于图神经网络的聚类研究 Part 1 表示学习和网络聚类 分享专家: 北京邮电大学 石川教授 内容简介: 机器学习=表示+目标+优化,一个好的表示对于好的机器学习系统是至关重要的。...本期北京邮电大学的石川教授将为我们介绍表示学习的不同种类还有网络聚类的发展历程。...内容难度:★★☆(计算机专业或有一定计算机知识储备的大学生) 以下为精彩视频 ---- 关注更多精彩短视频,点击下方程序小卡片 也可点击“阅读原文”或打开“哔哩哔哩” 搜索关注“Wiztalk”, 一起开启科普知识分享...“新视界”~ ---- — 关于Wiztalk — Wiztalk是腾讯高校合作团队打造的一个短视频知识分享系列,每集10分钟左右,致力于跟随科技的发展以及时代的步伐,使用更为科普化的方式传播最新、最热门...、最通用的知识。

    57310

    手把手教你如何利用K均值聚类实现异常值的识别!

    前言 在上一期的异常值识别《KNN除了可以做分类和预测,还知道它可以识别异常值吗?》中,我们详细分享了如何使用K近邻的方法完成数据中异常值的查询。...但该方法的最大缺陷在于计算复杂度高,对于大数据而言,识别异常数据将会消耗较长的时间。本期将从K均值聚类的角度,帮助大家理解该方法在异常值识别过程中的优势!...,得到子图5的划分结果和子图6中新的簇内样本均值;以此类推,最终得到理想的聚类效果,如子图9所示,图中的五角星即最终的簇中心点。...在上文中,我们生成了两组随机数据,从图中一眼就可以看出需聚为两类,然而在实际应用中,很多数据都无法通过可视化或直觉判断聚类的个数(即K值)。...异常点识别原理 使用K均值聚类的思想识别数据中的异常点还是非常简单的,具体步骤如下: 利用“拐点法”、“轮廓系数法”、“间隔统计量法”或者“经验法”确定聚类的个数; 基于具体的K值,对数据实施K均值聚类的应用

    1.7K30

    基于k-means++和brich算法的文本聚类

    文本聚类流程如下:未命名文件 (1).jpg分词和过滤停用词,这里分词有两步,第一步是对停用词进行分词,第二步是切分训练数据。...tfidf = np.delete(tfidf, dele_axis, axis=1)使用k-means算法进行聚类,并调整参数,主要是聚类中心的数量的调整和迭代次数的调整这里由于自己写的k-means...轮廓系数(Silhouette Coefficient),是聚类效果好坏的一种评价方式。最早由 Peter J. Rousseeuw 在 1986 提出。它结合内聚度和分离度两种因素。...,birch算法是通过集成层次聚类和其他聚类算法来对大量数值数据进行聚类,其中层次聚类用于初始的微聚类阶段,而其他方法如迭代划分(在最后的宏聚类阶段)。...print('降维后维度: ', len(X[0])) print(X) return X总结:本次对文本聚类是自己的第一个机器学习相关的练手小项目,其中涉及到许多和机器学习相关的算法和概念

    2.5K11

    APT 组织的聚类和攻击者活动关联

    并将该模型与威胁情报结合进行量化,来帮助情报专家来发现新的威胁组织、根据分析师需要提供可靠的“类聚”来提升对威胁事件的分析效率。...迄今为止,FireEye 关于 APT 组织的聚类和归因决策是分析师来人工执行,因为它需要严谨的分析和证明。但是,随着 FireEye 收集到越来越多有关攻击者活动的数据,这种人工分析成为瓶颈。...另外,FireEye采用 IDF 值的自然对数来描述- 正如在图中看到的,当值接近1(非常常见的项)时,对数取值为接近零,从而降低了最终的 TF*IDF 值。...图 8:使用从已知 APT 组派生的“假”集群进行的相似性测试 此外,这些合成创建的聚类为 FireEye 提供了一个数据集,可以在其上测试模型的各种迭代。如果我们删除主题怎么办?...v=zMdHGY53VEw FireEye 期待着智能模型能够帮助威胁研究者关联分析、聚类发现和明确更多已知的和未知的 APT 相关事件,并在威胁发生之前阻止攻击者。

    1.6K20

    Spark MLlib中KMeans聚类算法的解析和应用

    主要分为4个步骤: 为要聚类的点寻找聚类中心,比如随机选择K个点作为初始聚类中心 计算每个点到聚类中心的距离,将每个点划分到离该点最近的聚类中去 计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心...反复执行第2步和第3步,直到聚类中心不再改变或者聚类次数达到设定迭代上限或者达到指定的容错范围 示例图: ?...KMeans算法在做聚类分析的过程中主要有两个难题:初始聚类中心的选择和聚类个数K的选择。...,即原始的距离计算 Spark MLlib中KMeans相关源码分析 ---- 基于mllib包下的KMeans相关源码涉及的类和方法(ml包下与下面略有不同,比如涉及到的fit方法): KMeans类和伴生对象...initialModel:可以直接设置KMeansModel作为初始化聚类中心选择,也支持随机和k-means || 生成中心点 predict:预测样本属于哪个"类" computeCost:通过计算数据集中所有的点到最近中心点的平方和来衡量聚类效果

    1.2K10

    如何通俗理解类和类型的差别?

    如何通俗理解类和类型的差别? —— 新手编程1001问之C#编程基础 ---- 我们日常编程经常遇到类和类型的概念,有时不免会对这两个东西产生纠结,它们究竟是同一种东西呢?还是有什么差别?...C#约定了一切的数据类型的原始基类只有一个,叫做Object类型,这个除了为了表达和理解、以及溯源方便,有C#编程经验的同学,还应该知道因为有了Object类型,有些数据就可以通过“装箱”和“拆箱”操作来实现数据类型的转换...因为它是描述对象的一个最重要的概念。 C#中,微软官方是这样定义的: 类是最基本的 C# 类型。类是一种数据结构,可在一个单元中就将状态(字段)和操作(方法和其他函数成员)结合起来。...其实,这些我们自定义的类,就是C#类型的一种,它是在C#基本类型之外,允许程序员自主创建的数据类型。并且,它归类于引用类型。 所以,从这个意义上来说,类和类型既有差别,本质上又还是同一种东西。...这正是人类语言的智慧所在,回头看看,前人将Type和Class翻译为类型和类,是多么的贴切和恰当,如果你从来都不会混淆它们,似乎都是不对的。

    2K30

    获取pheatmap聚类后和标准化后的结果

    pheatmap是简单常用的热图绘制包,可以快速、简单、可定制的绘制漂亮热图。具体见R语言学习-热图简化和免费高颜值可定制在线绘图工具 ImageGP。...现在要解决的一个问题是图出来了,想看下转换后用于绘图的表格,也就是获取聚类后的矩阵和聚类标准化后的矩阵。...提取聚类后的原始矩阵 # 查看绘图数据的结构 # 直接查看会很大,这里只展示其前2层 # str: structure str(a, max.level = 2) # Rstudio中 # View(...重新排列行和列 mat_cluster <- mat[a$tree_row$order, a$tree_col$order] mat_cluster 完成提取 ## sample_2...0.3286368 -0.85242874 ## gene_3 -0.8220414 -1.1916559 0.2814619 1.8720241 0.6545161 0.04775437 提取聚类后的标准化矩阵

    2.1K40

    基于模型的聚类和R语言中的高斯混合模型

    p=6105 介绍 聚类模型是一个概念,用于表示我们试图识别的聚类类型。...四种最常见的聚类方法模型是层次聚类,k均值聚类,基于模型的聚类和基于密度的聚类 可以基于两个主要目标评估良好的聚类算法: 高级内相似性 低级间相似性 基于模型的聚类是迭代方法,通过优化聚类中数据集的分布...有关高斯混合模型的详细信息 基于概率模型的聚类技术已被广泛使用,并且已经在许多应用中显示出有希望的结果,从图像分割,手写识别,文档聚类,主题建模到信息检索。...接下来,检索聚类方法的集群验证统计信息: 通常,我们专注于使用within.cluster.ss和avg.silwidth验证聚类方法。...轮廓值通常为0到1; 接近1的值表明数据更好地聚类。 k-means和GMM之间的关系 K均值可以表示为高斯混合模型的特例。

    1.9K10

    8个常见的无监督聚类方法介绍和比较

    无监督聚类方法的评价指标必须依赖于数据和聚类结果的内在属性,例如聚类的紧凑性和分离性,与外部知识的一致性,以及同一算法不同运行结果的稳定性。...,旨在识别数据中的"exemplars"(代表点)和"clusters"(簇)。...Agglomerative  Clustering算法的优点是适用于不同形状和大小的簇,且不需要事先指定聚类数目。此外,该算法也可以输出聚类层次结构,便于分析和可视化。...Bisecting  K-Means算法的优点是具有较高的准确性和稳定性,能够有效地处理大规模数据集,并且不需要指定初始聚类数目。该算法还能够输出聚类层次结构,便于分析和可视化。...个聚类算法,我们对他们进行了简单的说明和比较,并且用sklearn演示了如何使用,在下一篇文章中我们将介绍聚类模型评价方法。

    45630

    物联网资产标记方法研究【二】——基于聚类算法的物联网资产识别算法

    对于已知类型的物联网资产往往通过专家知识进行指纹提取,此类方法的人工成本和时间成本都比较高。在探索物联网资产识别的道路上,我们通过研究应用聚类算法取得了不错的效果。...二、物联网资产识别 物联网资产识别的关键在于找到物联网指纹,往期文章中已经介绍过物联网资产的一些特征和识别方法。...三、聚类算法应用及实践 对物联网资产进行算法应用之前,首先需要对收集的报文信息进行向量化处理。...通过对报文中必要的属性以及标签内容等有效信息进行提取,然后采用TF-IDF进行文本数据向量化,最后通过数据降维PCA技术将向量化的文本进行降维,降维之后的向量作为聚类算法模型的输入进行聚类,向量化过程如下...资产数据向量化提取流程 聚类算法包括基于距离的K-Means聚类算法,基于层次划分的Hierarchical Agglomeration聚类算法,基于密度的EM聚类算法,以及DBSCAN等多种不同方式的聚类算法

    1.4K10

    多分组表达量矩阵的层次聚类和组合pca分析

    上游的定量过程是需要服务器的,这里省略,我们主要是演示一下多分组表达量矩阵的层次聚类和组合pca分析。...表达量矩阵的层次聚类是一种用于分析和可视化基因表达数据的统计方法。...在生物信息学和基因表达分析中,层次聚类可以帮助研究者根据基因表达模式将基因或样本分组,从而揭示不同样本间的相似性和差异性。...结果解释:层次聚类的结果通常以树状图的形式展示,树状图的每个分支代表一个聚类,而分支的连接点则表示聚类合并的步骤。...生物学意义:层次聚类揭示的基因或样本的聚类模式,可以为进一步的实验设计、功能注释和生物标志物的发现提供线索。

    39610
    领券