首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于keras的手写数字识别_数字识别

大家好,又见面了,我是你们的朋友全栈君。...一、概述 手写数字识别通常作为第一个深度学习在计算机视觉方面应用的示例,Mnist数据集在这当中也被广泛采用,可用于进行训练及模型性能测试; 模型的输入: 32*32的手写字体图片,这些手写字体包含0~...9数字,也就是相当于10个类别的图片 模型的输出: 分类结果,0~9之间的一个数 下面通过多层感知器模型以及卷积神经网络的方式进行实现 二、基于多层感知器的手写数字识别 多层感知器的模型如下,其具有一层影藏层...x_test, y_test) # 从Keras导入Mnist数据集 (x_train, y_train), (x_validation, y_validation) = loadData() # 显示4张手写数字图片...=>..] - ETA: 0s 10000/10000 [==============================] - 1s 112us/step MLP: 98.07% 三、基于卷积神经网络的手写数字识别

1.8K10

数字识别

上篇的内容最后一个案例代码,其实来自官方的手写数字识别案例教程,我自己基于里面的内容自己删减了一些。...这里主要讲一下里面的数据集,sklearn自带了很多数据集,在安装包的data里面,就有手写数字识别数据集。 虽说是数字识别,不过这个数据集里面并没有实际图片。...这里的数字识别核心的可以分为下面几步: 第一步:创建分类器模型 简单理解,可以看作一个映射函数,传入一个数据,就可以返回一个结果给你。...,不过识别前都会通过测试数据测试一下,先看看准确率怎么样,确定效果还不错,就可以用来测试没有见过的数字图片了。...2.从图片文件夹中将所有数字图片读取出来 这里只是做了数字图片的读取,所以只能识别数字。 3.定义一个单张图片匹配的方法。

1.6K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pytorch实现简单的数字识别(上)

    使用深度学习神经网络对数字识别,大体需要4个步骤:①读取数据。②建立模型。③训练。④测试、验证。 其基本流程示意图如下: ? 上图由左至右依次为输入层、神经层a、神经层b、输出层。...plt.xlabel('step') # 输入x轴名称 plt.ylabel('value') # 输入y轴名称 plt.show() 定义第二个工具:用图像表示识别结果...def plot_result_image(img, label, name): # 以图像的方式输出识别出的结果 fig = plt.figure() # 先输出空白图像...for i in range(9): # 以迭代的方式,一次性输出9个图像 plt.subplot(3, 3, i+1) # 3 * 3 的图片输出样式...import torch from torch import nn # nn用于完成神经网络间的相关操作 from torch.nn import functional as F # F为神经网络运算的常用计算包

    1.5K70

    mnist手写数字识别代码(knn手写数字识别)

    MNIST 手写数字识别模型建立与优化 本篇的主要内容有: TensorFlow 处理MNIST数据集的基本操作 建立一个基础的识别模型 介绍 S o f t m a x Softmax Softmax...回归以及交叉熵等 MNIST是一个很有名的手写数字识别数据集(基本可以算是“Hello World”级别的了吧),我们要了解的情况是,对于每张图片,存储的方式是一个 28 * 28 的矩阵,但是我们在导入数据进行使用的时候会自动展平成...,下面建立一个简单的模型来识别这些数字。...argmax()也就是比较的是索引 索引才体现了预测的是哪个数字 # 并且 softmax()函数的输出不是[1, 0, 0...]...feed_dict=feeds) / num_batch # 输出一些数据 if epoch % display_step == 0: # 为了输出在训练集上的正确率本来应该使用全部的

    2.3K30

    【项目实战】MNIST 手写数字识别(上)

    前言 本文将介绍如何在 PyTorch 中构建一个简单的卷积神经网络,并训练它使用 MNIST 数据集识别手写数字,这将可以被看做是图像识别的 “Hello, World!”...; MNIST 包含 70,000 张手写数字图像:60,000 张用于训练,10,000 张用于测试。这些图像是灰度的,28x28 像素,居中以减少预处理并更快地开始。  ...配置环境 在本文中,我们将使用 PyTorch 训练卷积神经网络来识别 MNIST 的手写数字。 PyTorch 是一个非常流行的深度学习框架,如 Tensorflow、CNTK 和 Caffe2。...在这里,epoch 的数量定义了我们将在整个训练数据集上循环多少次,而 learning_rate 和 momentum 是我们稍后将使用的优化器的超参数。...接下来,就是要构建一个简单的卷积神经网络,并训练它使用 MNIST 数据集识别手写数字;

    54821

    opencv +数字识别

    现在很多场景需要使用的数字识别,比如银行卡识别,以及车牌识别等,在AI领域有很多图像识别算法,大多是居于opencv 或者谷歌开源的tesseract 识别....由于公司业务需要,需要开发一个客户端程序,同时需要在xp这种老古董的机子上运行,故研究了如下几个数字识别方案,如果大家有更好的方案可以留言告知我,大家一起学习借鉴,不过需要支持XP系统,万分感谢!...以上几种ocr 识别比较,最后选择了opencv 的方式进行ocr 数字识别,下面讲解通过ocr识别的基本流程和算法. opencv 数字识别流程及算法解析 要通过opencv 进行数字识别离不开训练库的支持...,需要对目标图片进行大量的训练,才能做到精准的识别出目标数字;下面我会分别讲解图片训练的过程及识别的过程. opencv 识别算法原理 1.比如下面一张图片,需要从中识别出正确的数字,需要对图片进行灰度...原图 灰度化图 二值化图 寻找轮廓 识别后的结果图 以上就是简单的图片进行灰度化、二值化、寻找数字轮廓得到的识别结果(==这是基于我之前训练过的数字模型下得到的识别结果==) 有些图片比较赋值

    2.5K20

    移动设备上的多位数字识别

    但是,据我们所知,在移动设备上使用CNN进行多位数字识别尚未得到很好的研究。 移动解决方案具有许多优点:便携、便宜且拥有便捷的交互界面。但是,移动平台有其自身的约束,例如实时响应速度、有限的内存资源。...测试结果表明,虽然使用了相对较浅的CNN,在MNIST数据集上的单个数字识别仍可以达到99.07%的Top 1精度。通过使用上述优化方法,我们可以在大约60ms内处理一个图像帧,提取32位数字。...分割 使用轮廓查找器分割数字块,并将其调整为28×28,以便于识别。此外,系统还基于数字的位置来计算哪些数字位属于同一个数。 识别 使用CNN识别每个图像块中的数字。...CNN在主机上训练,移动设备加载训练好的参数。程序在全连接层中批量处理多个图像,加速CNN计算。 预处理 ? ? 图1:预处理和分割步骤中的输入和中间图像 用户拍摄写在浅色纸或纸板上的手写数字的照片。...使用CNN进行数字识别 进行数字分割之后,原始图像中的每个数字位依次缩放成28×28的图像块。图像块送入CNN进行识别。

    2K20

    MNIST手写数字识别

    文章分类在Pytorch: Pytorch(2)---《MNIST手写数字识别》 MNIST手写数字识别 一、 实验目的 掌握利用卷积神经网络CNN实现对MNIST手写数字的识别。...28 * 28像素的灰度手写数字图片。...type Markdown and LaTeX: α2α2 直接下载得到的数据集是无法通过普通的解压或者应用程序打开的,因为这些文件不是任何标准的图像格式而是以字节的形式进行存储的,所以必须编写相关程序将其打开...2.模型上使用torch.nn.Sequential 添加载入测试集数据 """ # Super parameter -----------------------------------------...).sum().item() #标签预测准确的次数 # acc表示标签预测的准确率,即预测准确次数除以预测标签的所有次数,acc的计算代码公式 acc = correct/total

    27110

    Softmax 识别手写数字

    TensorFlow 入门(二):Softmax 识别手写数字 MNIST是一个非常简单的机器视觉数据集,如下图所示,它由几万张28像素x28像素的手写数字组成,这些图片只包含灰度值信息。...我们的任务就是对这些手写数字的图片进行分类,转成0~9一共十类。 ?...每一个样本都有对应的标注信息,即label。我们将在训练集上训练模型,在验证集上检验效果并决定何时完成训练,最后我们在测试集评测模型的效果(可通过准确率,召回率,F1-score等评测。)...这里手写数字识别为多分类问题,因此我们采用Softmax Regression模型来处理。关于Softmax,可以参看这里。你也可以认为它是二分类问题Sigmoid函数的推广。...(总共有K类),zjzjz^j表示上一层的输出,可以是任意实数。

    2.3K40

    基于tensorflow的手写数字识别

    一、前言 本文主要介绍了tensorflow手写数字识别相关的理论,包括卷积,池化,全连接,梯度下降法。...二、手写数字识别相关理论 2.1 手写数字识别运算方法 图1 识别过程就像图片中那样,经过多次卷积和池化(又叫子采样),最后全连接就运算完成了。...展示了一个3*3的卷积核在5*5的图像上做卷积的过程。每个卷积都是一种特征提取方式,就像一个筛子,将图像中符合条件 (激活值越大越符合条件)的部分筛选出来。...卷积核在图片灰度矩阵上从左到右 ,从上到下滑动,每一次滑动两个矩阵对应位置的元素相乘然后求和就可以得到右边矩阵的一个元素。 图3 在图3的左图中,卷积的运算方式是模拟人脑神经网络的运算方式。...梯度下降的原理:将函数比作一座山,我们站在某个山坡上,往四周看,从哪个方向向下走一小步,能够下降的最快。

    1.6K70

    PaddlePaddle之手写数字识别

    传统的基本都能做,尤其对NLP的支持很好,譬如情感分析,word embedding,语言模型等,反正你想得到的,常见的都可以用它来试一试~ PaddlePaddle的安装 不得不吐槽一下PaddlePaddle...实现手写数字识别   训练步骤 传统的方式这次就不展开讲了,为了对比我们还是用CNN来进行训练。...这次训练的手写数字识别数据量比较小,但是如果想要添加数据,也非常方便,直接添加到相应目录下。 2.event_handler机制,可以自定义训练结果输出内容。...之前用的keras,以及mxnet等都是已经封装好的函数,输出信息都是一样的,这里paddlepaddle把这个函数并没有完全封装,而是让我们用户自定义输出的内容,可以方便我们减少冗余的信息,增加一些模型训练的细节的输出...,大家多多用起来呀~~可以多交流呀~ ps:由于paddlepaddle的文档实在太少了,官网的文章理论介绍的比较多,网上的博文大多数都是几个经典例子来回跑,所以我打算写个系列,跟实战相关的,不再只有深度学习的

    1.4K80

    基于FPGA的数字识别三

    基于FPGA的数字识别三 作者:OpenS_Lee 1 背景知识 在《基于FPGA数字识别一》我们在三种数字识别方法中选择了数字特征识别算法,完成了屏幕固定位置的数字识别。...图1 基于固定标线的数字识别 在《基于FPGA的数字识别二》中我们在数字识别的前端增加了移动目标的追踪模块,从而完成了屏幕范围内0-9的任意位置的识别。...例如图2,首先定位出数字在屏幕的上下左右边界,最后以此边界为依据识别数字。从而改变的数字不能移动的问题。但是每次只能识别一个数字。 ?...这为多个数字识别或是车牌识别打下基础。 ? 图3 水平垂直投影分割字符 在《基于FPGA的数字识别三》中我们将完成多个数字的同时识别,且不限于多个数字在屏幕上的位置大小。...图6 放出标线的多个数字识别调试 ? 图7 放出标线的5,6,7 ? 图8 追踪边界的5,6,7识别 至此数字识别完成,再次基础上我们还可以对简单图像的识别或增加语音系统完成对识别数字的播报。

    85020

    基于tensorflow的MNIST数字识别

    一、MNIST数据集介绍MNIST是一个非常有名的手写体数字识别数据集,在很多资料中,这个数据集都会作为深度学习的入门样例。...二、基于tensorflow的MNIST手写数字识别import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data...于是得到的结果是长度为batch的# 一维数组,这个一维数组中的值就表示了每一个样例对应的数字识别结果。tf.equal# 判断两个张量的每一维是否相等,如果相等返回True,否则返回False。...手写数字识别问题解决程序一共分为三部分,第一个是mnist_inference.py,它定义了前向传播的过程以及神经网络中的参数,第二个是mnist_train.py,它定义了神经网络的训练过程。...如果需要离线预测未知数据的类别(比如这个样例程序可以判断手写体数字图片中包含的数字)。只需要将计算正确率的部分改为答案输出即可。运行mnist_eval.py程序可以得到类似下面的结果。

    3K11

    机器学习-手写数字识别

    据说,在命令行窗口打印出‘hello,world’是入门编程语言的第一个程序,那么手写数字识别就是机器学习的hello,world了,学习的东西不经常复习的容易忘记,因此在这里记录一下。...---- 最初学习机器学习的时候,我自己先做的其实是线性回归和逻辑回归,但是我用自己创建的函数和数据一直不能很好的让结果去拟合数据,所以不是成功的代码,还是需要在多研究一下。...要进行手写数字识别,首先需要数据,然后在定义一个神经网络来对数据进行训练,然后把训练好的权重和模型保存起来,在另外的程序调用,并拿来测试你想要测试的图片,看看训练的结果是不是比较正确。...关于数据获取,这里选择的keras自带的数据集,可以在keras的官网可以找到你需要的数据集,https://keras.io/datasets/ 数据集包含10个数字的60,000个...然后再添加一个隐藏层,这里就不用定义输入个数,只需要输出的和激活函数,紧接着就是输出层了,因为我们的数字是0-9,有10个数字,这里的大小也是10,而这里的激活函数就要改成softmax,模型就这样构建完成了

    1.4K20
    领券