首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    大津阈值法原理_ostu阈值分割

    具体的公式推导参见冈萨雷斯 《数字图像处理》 Otsu方法又称最大类间方差法,通过把像素分配为两类或多类,计算类间方差,当方差达到最大值时,类分割线(即灰度值)就作为图像分割阈值。...Otsu还有一个重要的性质,即它完全基于对图像直方图进行计算,这也使他成为最常用的阈值处理算法之一。...代码如下; //返回阈值的大津阈值法 double Otsu_threshold(const cv::Mat& InputImage) { cv::Mat SrcImage = InputImage.clone...} double max_Sigma_k = 0.0; std::vectormaxval_Ts; double Threshold_T = 0; //最终输出的阈值...max_Sigma_k - sigma_ks[i]) < 1e-8) maxval_Ts.push_back(i); } //如果极大值点不唯一,那么取对应各个极大值的各个k的平均值来得到最终阈值

    1.1K10

    算法的权值-基于局部权值阈值调整的BP 算法的研究.docx

    基于局部权值阈值调整的BP 算法的研究.docx基于局部权值阈值调整的BP算法的研究刘彩红'(西安工业大学北方信息工程学院,两安)摘要:(目的)本文针对BP算法收敛速度慢的问题,提出一种基于局部权值阈值调桀的...)该算法结合生物神经元学与记忆形成的特点,针对特定的训练样本,只激发网络中的部分神经元以产生相应的输岀,而未被激发的神经元产生的输出则与目标输岀相差较大算法的权值,那么我们就需要对未被激发的神经元权值阈值进行调整...所以本论文提出的算法是对局部神经元权值阈值的调整,而不是传统的BP算法需要对所有神经元权值阈值进行调一整,(结果)通过实验表明这样有助于加快网络的学速度。...关键词:BP神经网络,学算法,距离,权值阈值调整-hong(Xi'ing,Xi'):e・,,'.^算法的权值,.,work....2基于局部权值阈值调整算法的改进思想本文提出的算法结合生物神经元学与记忆形成的特点⑸,针对特定的训练样本,只激发网络中的部分神经元以产生相应的输出,而未被激发的神经元产生的输出则与目标输出相差较大,那么我们就需要対未被激发的神经元的权值阈值进行调整

    39320

    06: 阈值分割

    目标 使用固定阈值、自适应阈值和Otsu阈值法"二值化"图像 OpenCV函数:cv2.threshold(), cv2.adaptiveThreshold() 教程 固定阈值分割 固定阈值分割很直接,...一句话说就是像素点值大于阈值变成一类值,小于阈值变成另一类值。...自适应阈值 看得出来固定阈值是在整幅图片上应用一个阈值进行分割,_它并不适用于明暗分布不均的图片_。...如果你没看懂上面的参数也不要紧,暂时会用就行,当然我建议你调整下参数看看不同的结果。...Otsu阈值 在前面固定阈值中,我们是随便选了一个阈值如127,那如何知道我们选的这个阈值效果好不好呢?答案是:不断尝试,所以这种方法在很多文献中都被称为经验阈值。

    84930

    数据清洗

    数据清洗 一般义的清洗 特殊字符 在数据清洗中最常见的就是特殊字符,一般的特殊字符可以直接替换掉如地址码中最常见的’#’,像这种直接替换为号即可。...全角半角转换 数据由于来源或采集问题,可能会有全角的数字或字母,而一般的系统都不会允许有这种问题,所以需要将这些问题在清洗步骤中处理掉。...错/别字处理 错别字问题在数据清洗中是难度比较大的一部分工作,在这部分工作中,首先要找出错别字,并建立错别字对应的正确字符串的对应关系,然后使用程序批量的完成替换 空值检测 空值是要在数据清洗中过滤掉的...清洗中常用的工具与技术 如果要做地理数据的相关处理,那么FME是应该首选工具,当然,清洗也属于数据处理的范畴。...综上,在数据清洗中,能够掌握FME与Python基本就够了,如果你还会点正则,那就基本上是完美了!就是这样,各位,节日快乐!晚安!

    1.7K20

    opencv-阈值处理

    该图中的蓝色水平线代表着详细的一个阈值。 阈值类型1:二进制阈值化 该阈值化类型例如以下式所看到的: 解释:在运用该阈值类型的时候。先要选定一个特定的阈值量。比方:125。...阈值类型2:反二进制阈值化 该阈值类型例如以下式所看到的: 解释:该阈值化与二进制阈值化相似,先选定一个特定的灰度值作为阈值,只是最后的设定值相反。 (在8位灰度图中,比如大于阈值的设定为0。...阈值类型3:截断阈值化 该阈值化类型例如以下式所看到的: 解释:相同首先须要选定一个阈值,图像中大于该阈值的像素点被设定为该阈值,小于该阈值的保持不变。...阈值类型4:阈值化为0 该阈值类型例如以下式所看到的: 解释:先选定一个阈值,然后对图像做例如以下处理:1 像素点的灰度值大于该阈值的不进行不论什么改变;2 像素点的灰度值小于该阈值的,其灰度值所有变为...阈值类型5:反阈值化为0 该阈值类型例如以下式所看到的: 解释:原理类似于0阈值,可是在对图像做处理的时候相反,即:像素点的灰度值小于该阈值的不进行不论什么改变,而大于该阈值的部分。

    70220

    opencv 5 -- 图像阈值

    ,也可以分为局部性质的阈值,可以是单阈值的也可以是多阈值的 一、简单阈值–cv2.threshhold() 像素值高于阈值时,我们给这个像素 赋予一个新值(可能是白色),否则我们给它赋予另外一种颜色(也许是黑色...可以看到这里把阈值设置成了127(中灰色),对于BINARY方法, 当图像中的灰度值大于127的重置像素值为255 二、自适应阈值 自适应阈值可以看成一种局部性的阈值,通过规定一个区域大小,比较这个点与区域大小里面像素点的平均值...(为0相当于阈值 就是求得领域内均值或者加权值) 这种方法理论上得到的效果更好,相当于在动态自适应的调整属于自己像素点的阈值,而不是整幅图像都用一个阈值 import cv2 import numpy...这时要把阈值设为 0。然后算法会找到最 优阈值,这个最优阈值就是返回值 retVal。...设定一阈值,把直方图强度大于阈值的像素分成一组,把小于阈值的像素分成另外一组; 3. 分别计算两组内的偏移数,并把偏移数相加; 4.

    83720

    截断阈值化处理

    cv2.imshow("img",img) cv2.imshow("rst",rst) cv2.waitKey() cv2.destroyAllWindows() 算法:截断阈值化处理是将灰度值大于阈值的像素值设定为阈值...,小于或等于阈值的像素值保持不变;或将大于阈值的像素值保持不变,小于或等于阈值的像素值设定为阈值,二者只是显示形式不同。...截断阈值化处理应用在边缘提取、图像分割、目标识别等领域。 截断阈值化处理方式示意图: 例子: 设定阈值为130,即大于130的像素值设为130,小于或等于130的像素值保持改变。...或THRESH_TRUNC_INV类型,设定最大值 type表示阈值分割的类型 注意:截断阈值化处理的图像是彩色图像还是灰度图像。...通常情况下,最大最小的平均灰度值作为阈值。

    1.1K20
    领券