近期开赛的亚马逊云科技【AI For Good - 2022 遥感光学影像目标检测挑战赛】中,动辄超过10000 x 10000的卫星遥感图像让许多选手感到头疼。同时遥感影像中目标尺寸差别大、角度各异也导致常见的CV框架难以实现快速精准的目标识别。
一般情况下,遥感目标检测中,遥感图像的图片尺寸都会很大,且图像中元素极为复杂,近期开赛的亚马逊云科技【AI For Good - 2022 遥感光学影像目标检测挑战赛】也不例外,动辄超过10000 x 10000的卫星遥感图像让许多选手感到头疼。同时遥感影像中目标尺寸差别大、小而密集、角度各异也导致常见的CV框架难以实现快速精准的目标识别。所以,如何实现遥感图像等超大尺寸图像快速识别? 目前比较成熟的卫星图像识别算法并不少,但大多依托于强大的计算资源,为了用有限的计算资源实现大尺寸图像识别,我们找到了一个
阻碍我们爬虫的。有时候正是在登录或者请求一些数据时候的图形验证码。因此这里我们讲解一种能将图片翻译成文字的技术。将图片翻译成文字一般被成为光学文字识别(Optical Character Recognition),简写为OCR。实现OCR的库不是很多,特别是开源的。因为这块存在一定的技术壁垒(需要大量的数据、算法、机器学习、深度学习知识等),并且如果做好了具有很高的商业价值。因此开源的比较少。这里介绍一个比较优秀的图像识别开源库:Tesseract。
如果你们想要实现酷炫的"商品识别"、"以图搜图",进军新消费领域却没有相应技术方案,怎么办?
谷歌2017开发者大会 Google I/O已经落幕,有不少亮点都值得我们学习和回顾,其中相当一部分是机器学习开发的内容。AI研习社精选了其中的精彩视频译制呈现给大家,该视频为中文字幕版首发! 来自谷歌TensorFlow技术推广部的Josh Gordon 带来了一场主题为《用于图像、语言和艺术的开源TensorFlow模型》(Open Source TensorFlow Models for images, language and art)的演讲,介绍了最新的从图像识别和语义理解的TensorFlow
【新智元导读】计算机视觉国际顶尖会议CVPR2016近日召开,从提交论文和口头报告内容看,深度学习成为主流。本文介绍会议概况及相关成果,比如谷歌教计算机学会分辨并预测视频中关键目标。同时也介绍法国 Inria 研究所 Nikos Paragios 的担忧:眼下计算机视觉领域过于关注深度学习,如果是一时的热潮还好,但研究者应该保持研究多样化,坚持基础理论研究。 2016年的计算机视觉领域国际顶尖会议 Computer Vision and Pattern Recognition conference(CVP
AI 科技评论按:上周我们报道了谷歌的一项研究 “数据为王”是真的吗?谷歌轻抚着100倍的数据量点了点头 - AI科技评论,它直观地体现了更多训练数据可以带来更好的结果,但连线(WIRED)的这篇文章
一场技术人员的狂欢又拉开帷幕。APP原理很简单,用户只需要上传一张照片,就能把自己或其他人替换为“吴彦祖”、“彭于晏”、“玛丽莲梦露”以及你想要看到的任何人。你懂的!当然,也由此诞生了一场舆论的漩涡!
看懂一个东西对人类来说很容易,但是对机器来说却是很难的,这个时候图像识别技术就应运而生。今天我们就为大家揭秘图像识别技术原理,告诉你机器如何利用卷积神经网络进行图像识别,从而“看见”这个世界。
“在未来30年, 人工智能将取代目前世界上50%的工作。” ——莱斯大学 计算机科学教授 Moshe Vardi 不管未来怎么样,我觉得提高设计师的效率是眼前最容易做到的事情。 设计师打交道最多是图像
如果你是一名数据科学家或数据分析师,或者只是对这一行当感兴趣,你都应该了解下文中这些广受欢迎且非常实用的Python库。
小编相信,现在的很多人都对人工智能比较感兴趣,觉得它很厉害,很高大上,实际上呢,也的确是这样,然而,由于大家都不一定在这个圈子,所以可能只有或多或少的了解,为了照顾到大部分老铁们,咱们今天来聊聊人工智能那些事儿。先来点开胃菜:
在人工智能产业中,应用层是一个极大的部分,是人工智能技术最终的目的地。除了机器人、无人机和无人驾驶等硬件产品之外,人工智能的软件应用在单独商业化的同时,也在为这些硬件产品提供服务,像智能家居的语音控制
AiTechYun 编辑:nanan 在刚刚过去的一月份(2018年1月),Facebook的研究机构Facebook AI Research(FAIR)发布了开源的Detectron对象检测库。几个
最近朋友问我能不能写一个自动化,帮他解放一下双手。我想了想,在我知识里很多辅助脚本制作工具,想想那些可能会有一堆局限性,想到了Python有自动化测试游戏框架或者工具,但是一直没有了解,搜了下资料,突然发现了AirTest,嗯…还是小几年前的东西,于是我面无表情的点击了进去。
人工智能从幕后走向实用离不开人工智能技术取得的突破和发展。在互联网时代背景下,大数据、新型高性能计算架构以及深度学习帮助人工智能技术实现了从量变到质变的转变。其中,计算机视觉、语音识别技术均已能够规模
http://blog.sina.com.cn/s/blog_56d988430102w37c.html
最近朋友问我能不能写一个自动化,帮他解放一下双手。我想了想,在我知识里很多辅助脚本制作工具,想想那些可能会有一堆局限性,想到了Python有自动化测试游戏框架或者工具,但是一直没有了解,搜了下资料,突然发现了AirTest,嗯...还是小几年前的东西,于是我面无表情的点击了进去。
选自Medium 机器之心编译 参与:李泽南 在谷歌 TensorFlow API 推出后,构建属于自己的图像识别系统似乎变成了一件轻松的任务。本文作者利用谷歌开源的 API 中 MobileNet 的组件很快开发出了识别图像和视频内物体的机器学习系统,让我们看看她是怎么做到的。 市面上已有很多种不同的方法来进行图像识别,谷歌最近开源的 TensorFlow Object Detection API 是其中非常引人注目的一个,任何来自谷歌的产品都是功能强大的。所以,让我们来看看它能够做到什么吧,先看结果:
人工智能图像识别技术已经取得了一些令人惊叹的进步,但正如一项新的研究表明的那样,这些系统仍然可以被那些愚弄的例子所绊倒。 一群麻省理工学院的学生最近愚弄了谷歌开发的一种图像分类器,这群学生周三发布的一篇论文详细描述了一种可以更快地欺骗系统的技术。这种欺骗谷歌系统的方法提供了一个真实的例子,说明基于人工智能的图像识别系统是如何被黑客入侵的。 论文地址:https://arxiv.org/pdf/1712.07113.pdf 视频地址:http://imgcdn.atyun.com/2017/12/jqyqrd
导读:早在21世纪初开发大数据技术(诸如Hadoop、Pig和Hive)时所开展的研究和产品开发,就已经涵盖了目前大多数大型商业企业所开展的工作。
能提取图片中的文字的技术,将图片翻译成文字的技术一般被称为光学文字识别(Optical Character Recognition) 简写为OCR。而tesseract是一个OCR库,由谷歌赞助,是一个比较优秀的图像识别开源库。它具有很高的识别度,也具有很高的灵活性,可以通过训练识别任何字体。 tesseract库的官方文档
【AI研习社】关注AI前沿、开发技巧及技术教程等方面的内容。欢迎技术开发类文章、视频教程等内容投稿,邮件发送至:zhangxian@leiphone.com 随着谷歌2015年发布开源人工系统TensorFlow,让本就如火如荼的深度学习再添一把火,截至现在,TensorFlow已经历了多个版本演进,功能不断完善,AI开发者也能灵活自如的运用TensorFlow解决一些实际问题,下面雷锋网会对一些比较实用的TensorFlow应用做相关整理,让大家对TensorFlow有理性和感性的双层认知。 Tensor
本期谈谈 《虚拟私人助理》相关的内容。 我们先大致看下人工智能10大细分行业的典型应用: 1、深度学习/机器学习: 预测数据模型与分析数据的软件平台; 垃圾邮件检测; 金融诈骗检测; 2、自然语言处理: 语音识别; 智能客服; 智能化软件帮助系统; 智能化知识管理系统; 智能企业形象代表; 智能导游; 智能查询系统; 3、计算机视觉/图像识别: 面部识别软件; 基于内容的图片检索; 智能交通; 医疗计算机视觉和医学图像处理; 军事探测和导弹制导; 无人驾驶环境检测; 4、手势控制: 电脑手势指令系统; 游
公有云领域从来不缺乏大型玩家,随着亚马逊、微软、谷歌、阿里等巨头在云计算市场的快速扩张,基础云服务的同质化也愈发明显。
AI 研习社按:近日,谷歌在其“谷歌开源”博客(Google Open Source )中发表一篇名为《Supercharge your Computer Vision models with the TensorFlow Object Detection API》的文章,文中指出虽然谷歌的物体检测,图像识别机器学习系统很先进,但仍面临着很多挑战,比如如何提高识别精度。为此,谷歌将其物体检测系统代码开源,希望更多爱好者参与进来,共同推动研究领域的发展。我们对原文做了不改动愿意的整理和编译: 在谷歌,有为计算
下面这张在网上流传的图片展示了吉娃娃和松饼之间惊人的相似之处。这些图像通常在人工智能(AI)行业(包括我自己)的演示中共享。 但有一个问题没有人回答过:在消除像吉娃娃或松饼这样的图像的不确定性时,到
近日,百度深度学习实验室主任林元庆在百度年终媒体分享会上做了《看懂AI-百度技术开放日》的演讲,从客观层面阐述了人工智能技术研发的四大支柱,为我们呈现了让人工智能更深层,更极致的方法论,下面是演讲精华
AI科技评论按:6月15号,谷歌在其“谷歌开源”博客(Google Open Source )中发表一篇名为《Supercharge your Computer Vision models with the TensorFlow Object Detection API》的文章,文中指出虽然谷歌的物体检测,图像识别机器学习系统很先进,但仍面临着很多挑战,比如如何提高识别精度。为此,谷歌将其物体检测系统代码开源,希望更多爱好者参与进来,共同推动研究领域的发展。AI科技评论对原文做了不改动愿意的整理编译: 在谷
【新智元导读】 不同于以往的“深度好文”,这篇描写 Facebook AI发展的文章不仅仅聚焦在机器学习技术,更多地强调各种先进的机器学习模型与Facebook 本身的基础架构、大规模部署和产品管道之间的配合,并强调硬件的支撑能力。对于公司来说,得应用者才能得天下,文章列举了 Facebook 从2012年来在图像识别和视频识别等方面的技术应用,强调AI 技术的发展中学术实验与产业应用之间存在显著差异。不管是扎克伯格还是Yann LeCun,他们的目标都是打造具有类似人类智力的对话代理,AI 毫无疑问是F
AI 无处不在的时代,每天都有新的技术与研究成果。无论学术界还是商界,AI 方面的新闻都源源不断,让我们对 AI 行业产生新的认知与思考。
据外媒报道,谷歌的研究人员已经运用多种类型的训练数据创立了他们所谓的“一个模型解决所有问题”,以此在不同的任务中训练人工智能模型。 研究人员和专注于人工智能的谷歌大脑团队已将该模型与其它工具及模块化组件打包在其新的Tensor2Tensor(T2T)程序库中,他们希望该程序库将帮助促进深度学习研究。 该框架承诺通过定制一种环境来开展一些工作,以便深度学习模型能在各种各样的任务中工作。 正如他们在一篇新论文中所提出的所谓“一个模型解决所有问题”,深度学习已经在语音识别、图像分类和翻译上取得成功,但每种模型都需
作者:宋天龙 链接:https://www.zhihu.com/question/63383992/answer/222718972 来源:知乎
在一篇 CVPR 2023 论文中,来自 MIT 和谷歌的研究人员提出了一种全新的框架MAGE,同时在图像识别和生成两大任务上实现了 SOTA。
昨日,谷歌发表一篇博文称,在能制定出相关政策以阻止面部识别技术被滥用之前,它们将暂不出售采用这种技术的产品。
AI科技评论按:7月份,在经历了长达几个月外界对苹果AI技术落后的质疑后,苹果又有了一些新动作,首先是在7月20日上线了苹果机器学习官方博客(Apple Machine Learning Journal),并发表了第一篇博文;其次提交的论文被CVPR 2017收录,获最佳论文。 苹果CEO库克面对外界对苹果AI技术落后的质疑,曾向媒体回应说,苹果精神是“just work ”(实干精神),之所以外界看不到苹果AI技术的进展,是因为苹果只喜欢谈论即将上线的产品功能。这么来看,公众最多只能通过公开的博客和学术论
自 2015 年 11 月首次发布以来,TensorFlow 凭借谷歌的强力支持,快速的更新和迭代,齐全的文档和教程,以及上手快且简单易用等诸多的优点,已经在图像识别、语音识别、自然语言处理、数据挖掘和预测等 AI 场景中得到了十分广泛的应用。 在所有这些 AI 应用场景中,或许是源于视觉对人类的直观性和重要性,图像识别成为其中发展速度最快的一个。目前,该技术已经逐渐趋于成熟,并在人脸和情绪识别、安防、医疗筛查和汽车壁障等诸多领域都取得了重大成功。 在这种情况下,对于绝大多数的 AI 开发者而言,利用 Te
谷歌昨日推出了一款很有意思的绘画小程序 Quick, Draw! 。乍看这只是一个涂鸦游戏——它会随机显示一个名词,要求你在20秒内把它画出来。玩家需要用鼠标简单地把这个物体勾勒出轮廓,然后 Quick, Draw! 会判断你画的到底像不像。 “请在20秒内画个马桶” 但千万不要小看这个“游戏”,它是谷歌近期发布的一系列的其中一个 AI 试验工具中。它实际上使用了神经网络算法对玩家的涂鸦进行判断。谷歌试图用它来研究怎么让 AI 自学图像识别和光学字符辨识——这两项都是 AI
---- 新智元报道 来源:aiweirdness、gizmodo 编译:肖琴 【新智元导读】神经网络的专长之一是图像识别。谷歌、微软、IBM、Facebook等科技巨头都有自己的照片标签算法。但即使是顶尖的图像识别算法,也会犯非常奇怪的错误,它只看到它希望看到的东西。同样,即使是非常聪明的人类,也会被算法“愚弄”。 今天,只要你生活在互联网的世界,你就可能与神经网络交互。神经网络是一种机器学习算法,从语言翻译到金融建模等各种应用,神经网络都可以发挥作用。它的专长之一是图像识别。谷歌、微软、I
选自free Code Camp 作者:Mariya Yao 机器之心编译 参与:蒋思源、刘晓坤 本文通过吉娃娃与松饼的图像对比了流行的六大计算机视觉API,作者希望能借助这些识别情况帮助读者了解各
GAIR 今年夏天,雷锋网将在深圳举办一场盛况空前的“全球人工智能与机器人创新大会”(简称GAIR)。大会现场,雷锋网将发布“人工智能&机器人Top25创新企业榜”榜单。目前,我们正在四处拜访人工智能、机器人领域的相关公司,从而筛选最终入选榜单的公司名单。如果你的公司也想加入我们的榜单之中,请联系:2020@leiphone.com 五个月前,谷歌将自己的深度学习系统 TensorFlow开源。 而如今,亚马逊也决定,跟随谷歌的脚步将自己的深度学习软件开源。目前,你可以在 Github 上看到相关的源代码
移动互联网、智能手机以及社交网络的发展带来了海量图片信息,根据BI五月份的文章,Instagram每天图片上传量约为6000万张;今年2月份WhatsApp每天的图片发送量为5亿张;国内的微信朋友圈也是以图片分享为驱动。不受地域和语言限制的图片逐渐取代了繁琐而微妙的文字,成为了传词达意的主要媒介。图片成为互联网信息交流主要媒介的原因主要在于两点:
【新智元导读】过去一年人工智能和深度学习最重要的发展不在技术,而是商业模式的转变。过去6个月,所有巨头都将自己的深度学习IP开源。Data Science Central 网站主编、有多年数据科学和商业分析模型从业经验的 Bill Vorhies 分析了开源浪潮的形成原因:云服务后来者谷歌为了吸引用户、扩大市场,率先大举开源;随后,各巨头为了吸引人才、加速创新,也纷纷开源;OpenAI 的出现也为开源起到了一定推进作用。开源会使技术发展更快,但主宰市场的仍将是巨头。 (文/Bill Vorhies)过去一年
过去一年人工智能和深度学习最重要的发展不在技术,而是商业模式的转变。过去6个月,所有巨头都将自己的深度学习IP开源。Data Science Central 网站主编、有多年数据科学和商业分析模型从业经验的 Bill Vorhies 分析了开源浪潮的形成原因:云服务后来者谷歌为了吸引用户、扩大市场,率先大举开源;随后,各巨头为了吸引人才、加速创新,也纷纷开源;OpenAI 的出现也为开源起到了一定推进作用。开源会使技术发展更快,但主宰市场的仍将是巨头。
雷锋网按:本文根据涂图CTO在七牛云架构师沙龙上的演讲整理,本篇主要谈谈人脸识别技术的原理与具体实践的一些问题,作者授权发布雷锋网。 在上篇文章的最后,我们提到了美颜2.0最关键的技术——人脸识别。这是项复杂但又非常热门的技术,我们将在这篇文章中聊一聊图像识别技术。 一、如何让机器看懂世界? 这里我们来简单聊聊机器学习与深度学习。 近段时间,机器学习、深度学习的概念非常火,尤其是今年 AlphaGo 击败了韩国棋手这件事,引起了世界的轰动。机器学习和深度学习这两个概念,比较容易混淆,以至于很多媒体在写报道时
在通往人工智能的路上,Google一直在不停地买买买。 谷歌在2011年成立AI部门,目前已经有100 多个团队用上了机器学习技术,包括Google搜索、Google Now、Gmail等, 并往其开源Android手机系统中注入大量机器学习功能(如用卷积神经网络开发Android手机语音识别系统) 。谷歌目前产品和服务依靠主要AI技术驱动,如谷歌使用深度学习技术改善搜索引擎、识别Android手机指令、鉴别其Google+社交网络的图像。 2015年8月,谷歌宣布架构重组,设立母公司Alphabet,谷歌
【导读】《财富》封面文章报道深度学习推动的人工智能如何在整个计算生态系统引发革命。文章从深度学习发展的历史关键点入手,介绍重大的标志性技术突破,讲述了 Hinton、LeCun、李飞飞、吴恩达等研究者的故事,以及围绕技术和人才在谷歌、Facebook、微软、百度这些大公司之间展开的角逐。这篇文章可能是近期对深度学习最好的总结及介绍,也是深度学习已经跃居世界主流舞台的最好证明。 过去四年来许多领域的技术都取得了跨越性的发展。其中,最引人瞩目的是智能手机的语音识别功能比以往有了显著提升。当我们用声音命令手机
【新智元导读】《财富》封面文章报道深度学习推动的人工智能如何在整个计算生态系统引发革命。文章从深度学习发展的历史关键点入手,介绍重大的标志性技术突破,讲述了 Hinton、LeCun、李飞飞、吴恩达等研究者的故事,以及围绕技术和人才在谷歌、Facebook、微软、百度这些大公司之间展开的角逐。这篇文章可能是近期对深度学习最好的总结及介绍,也是深度学习已经跃居世界主流舞台的最好证明。 过去四年来许多领域的技术都取得了跨越性的发展。其中,最引人瞩目的是智能手机的语音识别功能比以往有了显著提升。当我们用声音命令手
来源:机器之心本文约1400字,建议阅读5分钟在一篇 CVPR 2023 论文中,来自 MIT 和谷歌的研究人员提出了一种全新的框架MAGE,同时在图像识别和生成两大任务上实现了 SOTA。 识别和生成是人工智能领域中的两大核心任务,如果能将二者合并到一个统一的系统中,这两个任务应该能实现互补。事实上,在自然语言处理中,像 BERT [1] 这样的模型不仅能够生成高质量的文本,还能够提取文本中的特征。 然而,在计算机视觉领域,目前的图像生成模型和识别模型大多是分开进行训练,没有充分利用这两个任务的协同作用。
领取专属 10元无门槛券
手把手带您无忧上云