一、前言
CRITIC权重法是一种比熵权法和标准离差法更好的客观赋权法:
它是基于评价指标的对比强度和指标之间的冲突性来综合衡量指标的客观权重。...数据如下:
二、详解计算均值和标准差
初始化一个简单的矩阵:
a = np.array([
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
])
a
分别计算整体的均值...、每一列的均值和每一行的均值:
print("整体的均值:", np.mean(a)) # 整体的均值
print("每一列的均值:", np.mean(a, axis=0))...# 每一列的均值
print("每一行的均值:", np.mean(a, axis=1)) # 每一行的均值
分别计算整体的标准差、每一列的标准差和每一行的标准差:
print("整体的方差.../datas/result03.xlsx")
df
datas = df.iloc[:, 1:]
datas
如下所示:
数据正向和逆向化处理:
X = datas.values
xmin = X.min