学习
实践
活动
专区
工具
TVP
写文章
  • 广告
    关闭

    新年·上云精选

    热卖云产品年终特惠,2核2G轻量应用服务器7.33元/月起,更多上云必备产品助力您轻松上云

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    labview车牌识别教学视频(车牌识别)

    常见的识别应用包括:药品包装标签识别、IC芯片编码读取、冲压零件上的字符识别、汽车零件编码读取以及车牌识别等。 OCR从本质上可看作是目标分类和识别的一种实际应用,因此它也包括训练和分类过程。 中的字符信息,然后由While循环逐一识别文件夹中的车牌图像,从中识别车牌号码; 在While循环中,程序将图像读入内存后,先删除所有图像中的叠加图层,然后由IMAQ OCR Read Text 3从设定的 ROI中识别车牌; IMAQ Overlay ROI可以根据识别到字符的边界矩形,在图像中用红色矩形框出各字符; 当退出按钮被按下时,程序退出While循环,并在释放内存空间、丢弃OCR会话后结束程序。 常见的车牌定位方法有以下几种: 根据车牌与其周围图像的差异,由纵横方向上的车牌边缘来确定车牌区域; 通过匹配车牌的几何轮廓或预先保存的各种车牌模板确定其位置; 通过车牌字符的纹理确定车牌位置; 通过车牌的颜色确定车牌位置 ; 通过车牌字符特征确定车牌位置。

    23130

    车牌识别(1)-车牌数据集生成

    上次提到最近做车牌识别,模型训练出来的正确率很高,但放到真实场景里面,识别率勉强及格,究其原因还是缺少真实环境数据集。 车牌涉及个人隐私,也无法大量采集到,国内有一个公开的就是中科大的CCPD车牌数据集,但车牌基本都是皖A打头的,因为采集地点在合肥。 基于这个原因,训练的车牌数据集只好自己生成,和大家分享一下这个生成思路, 第一步是先要随机生成一些车牌号 "京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑" R", "S", "T", "U", "V", "W", "X","Y", "Z" 65个字符按照一定的规则随机组合,比如第一位为汉字,第二位为某个字母,剩下的汉字和字母随机组合, 第二步找一张完整的车牌背景图 ,上面没文字,通过PIL库的draw函数把对应的文字按照车牌标准写到这张车牌背景图 第三步增加旋转、扭曲、高斯模糊等渲染车牌图像,最后把处理后的车牌融入到一张背景图上得到车牌数据集

    33620

    车牌识别SDK算法

    人工智能浪潮一波又一波,没有车牌识别,车辆限外的是难以监管下去的,下面说说比较普遍的车牌识别sdk在不同平台的用法。 移动端前端车牌识别SDK算法: 移动端前端车牌识别SDK算法软件特点: 1、识别速度快 “只需扫一扫,快速识别车牌” 像扫描二维码一样轻轻扫描,0.5s,便可快速准确的识别车牌号码。 2、支持超大角度识别,准确识别车牌 3、支持多平台应用 移动端前端车牌识别算法完美支持ios系统,Android系统,支持手机ARM平台和PDA的X86架构 移动端前端车牌识别SDK算法配置要求: 操作系统 :支持ios7.0,Android4.0 硬件配置:推荐ARM Cortex-A7以上,1G RAM 头:支持自动对焦,200万像素以上 安装程序占用空间,2MBytes 移动端前端车牌识别算法支持全车牌 蓝牌、黄牌、挂车号牌、新军牌、教练车牌、大使馆车牌、农用车牌、个性化车牌、港澳出入境车牌、澳台车牌、民航车牌、领馆车牌、新能源车牌

    1.4K00

    OpenVINO车牌识别网络详解

    LRPNet网络介绍 英特尔在OpenVINO模型加速库中设计了一个全新的车牌识别模型用于识别各种车牌包括中文车牌识别,其中在BITVehicle数据集上对中文车牌识别准确率高达95%以上。 官方发布的OpenVINO支持预训练模型中已经包含了LRPNet模型,可以用于实时的车牌识别。 英特尔自己说该网络是第一个实时车牌识别的纯卷积神经网络(没有用RNN),在CoreTMi7-6700K CPU上1.3ms可以检测一张车牌(图像大小1920x1080),我测试了一下貌似没有这么快,但是绝对是实时 | OpenVINO视觉加速库使用四 系列 | OpenVINO视觉加速库使用七 详解OpenCV卷积滤波之边缘处理与锚定输出 网络设计与结构 LRPNet是一种可以实现端到端训练、无需预分割再识别的轻量级卷积网络 该方法避免了传统方法两步走(先分割再识别)。把图像作为一个整体输入到卷积神经网络中去,然后直接产生识别的字符序列。

    2.1K50

    基于OpenCV 的车牌识别

    车牌识别是一种图像处理技术,用于识别不同车辆。这项技术被广泛用于各种安全检测中。现在让我一起基于OpenCV编写Python代码来完成这一任务。 车牌识别的相关步骤 1.车牌检测:第一步是从汽车上检测车牌所在位置。我们将使用OpenCV中矩形的轮廓检测来寻找车牌。如果我们知道车牌的确切尺寸,颜色和大致位置,则可以提高准确性。 因此,我们可以对其执行OCR(光学字符识别)以检测数字。 1.车牌检测 让我们以汽车的样本图像为例,首先检测该汽车上的车牌。然后,我们还将使用相同的图像进行字符分割和字符识别。 这样做是为了改善下一步的字符识别。但是我发现即使使用原始图像也可以正常工作。 ? 3.字符识别车牌识别的最后一步是从分割的图像中实际读取车牌信息。 车牌识别失败案例 车牌识别的完整代码,其中包含程序和我们用来检查程序的测试图像。要记住,此方法的结果将不准确。准确度取决于图像的清晰度,方向,曝光等。

    3.8K40

    中文车牌识别系统

    感谢Liuruoze的EasyPR开源车牌识别系统。 EasyPR是一个中文的开源车牌识别系统,其目标是成为一个简单、灵活、准确的车牌识别引擎。 它能够识别中文,例如车牌为苏EUK722的图片,它可以准确地输出std:string类型的"苏EUK722"的结果。 它的识别率较高。目前情况下,字符识别已经可以达到90%以上的精度。 例子 假设我们有如下的原始图片,需要识别出中间的车牌字符与颜色: ? 经过EasyPR的第一步处理车牌检测(PlateDetect)以后,我们获得了原始图片中仅包含车牌的图块: ? 字符识别,是字符分割与字符鉴别功能的组合 plate_recognize 车牌识别,是车牌检测与字符识别的共有子类 feature 特征提取回调函数 plate 车牌抽象 core_func.h 共有的一些函数 生成合成数据 获取帮助 详细的开发与教程请在微信恢复“车牌识别”。

    5.5K91

    车牌识别综述阅读笔记

    车牌识别综述阅读笔记 目前车牌识别所遇到的难点主要体现在三个方面,主要体现在:车牌倾斜,图像噪声,还有车牌模糊。 模板匹配:基于matlab+模板匹配的车牌识别 SVM:毕业设计 python opencv实现车牌识别 界面 深度学习方法基于u-net,cv2以及cnn的中文车牌定位,矫正和端到端识别软件 一、 车牌识别技术的介绍 车牌识别是一项成熟但不完善的技术,在现阶段,车牌识别已经有很多产品出来了,比如说停车场车牌自动识别,这些大多数都是针对固定角度,目前针对复杂环境下的车牌识别识别还有待提高,这些复杂环境主要是指 车牌识别技术可以分类三个部分,车牌定位, 字符分割 ,车牌识别。由于字符分割在一定程度下会影响识别率,最近就有一些人提出免分割的车牌识别,将车牌识别分割成两个部分,车牌定位,车牌识别。 Appl., vol. 131, pp. 219–239, Oct. 2019 2)基于无分割的车牌识别 基于无分割的算法将车牌识别问题转化为字符序列标记问题,现阶段,无分割的车牌识别主要是通过RNN

    24820

    关注

    腾讯云开发者公众号
    10元无门槛代金券
    洞察腾讯核心技术
    剖析业界实践案例
    腾讯云开发者公众号二维码

    相关产品

    • 汽车相关识别

      汽车相关识别

      汽车相关识别(Vehicle OCR)提供驾驶证识别、行驶证识别、车牌识别、车辆VIN码识别等多种服务,支持将图片上的文字内容,智能识别为结构化的文本,可应用于车主身份认证、ETC出行、违章识别、停车管理等多种场景,大幅提升信息处理效率。大幅提升信息处理效率。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券