智慧城管违规摆摊沿街晾晒识别检测系统通过opencv+python对现场画面中进行7*24小时不间断实时监测,当智慧城管违规摆摊沿街晾晒识别检测系统监测到沿街晾晒违规摆摊占道经营时,立即抓拍告警。...OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序,该程序库也可以使用英特尔公司的IPP进行加速处理。
工厂人员违规行为识别系统借助视频监控ai分析技术+计算机视觉学习技术,人员违规行为识别系统利用现场已有监控摄像头,对车间园区人员擅自离岗、玩手机、区域入侵、吸烟、劳保服不佩戴等个人行为实时检测分析,当系统识别到人员违规行为立即抓拍提醒...,违规截图和视频保存到数据库系统生成表,推到后台人员妥善处理,及时纠正不符合操作规范的行为。
工厂人员作业现场异常违规行为识别算法运用SVM算法图像识别技术,人员违规行为识别算法对工厂人员的行为是否合规SOP流程操作规范,帮助作业人员及时发现并纠正违规行为,确保作业过程的安全和合规性。...关于人员违规行为识别算法支持向量机的根本思想:第一点:SVM是针对线性可分情况进行分析,对于线性不可分的情况,人员违规行为识别算法通过使用非线性映射算法将低维输入空间线性不可分的样本映射到高维特征空间使其线性可分...第二点:SVM基于结构风险最小化理论在特征空间中构建最优分割超平面,使得人员违规行为识别算法学习器全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。...分割正负样本的分隔面有很多,这个间隔最大准则实际上是:意味着要找到那个以最大的确信度将正负样本分隔开并是工厂人员作业现场异常违规行为识别模型应对局部干扰最大的分割面图片总结首先,人员违规行为识别算法采用...人员违规行为识别算法的SVM采用了这样一种策略:将低维空间向高维空间转换,使得在低维空间不可分的样本在高维空间中变得可分,从而再按上述方法求解最优超平面。
安全生产作业现场违规行为识别算法通过SVM算法设定了各种合规行为和违规行为的模型,安全生产作业现场违规行为识别算法检测到违规行为,将立即进行抓拍并发送告警信息给相关人员,以便及时采取相应的处置措施。...,从而使得安全生产作业现场违规行为识别算法高维特征空间采用采用线性算法对样本的非线性特征进行线性分析成为可能。...在这直接引用论文中给出的CSI图像:SVM算法的分类模型设计安全生产作业现场违规行为识别算法采用SVM算法把CSI幅度和相位信息的变化特征作为输入,并且安全生产作业现场违规行为识别算法训练在假设的空间中找到一个最优分隔面把正反样本分隔开...总结首先,安全生产作业现场违规行为识别算法采用SVM算法解决人体行为特征识别是可行的,只是对于线性特征和非线性特征,需要使用不同类型的SVM分类器。...安全生产作业现场违规行为识别算法可以采用组合多个SVM进行多分类,常用的多分类方式有“一对一”和“一对多”。SVM采用统计理论,广泛应用于图像处理、文本分类、姿态识别等领域。
很多新手站长都是干劲十足,网站搭建好就迫不及待去找一批关键词去优化,写文章,特别是一些批量做网站的,忽略了致命的一点。...我们在百度、360、搜狗等搜索引擎搜索问题时,有没有发现,某些词的搜索结果非常少,甚至只有一些大的新闻网站才能展示。这是因为搜索引擎默认会屏蔽掉违规违法的词语,也是为了尽量不让网民上当受骗。...那你知道哪些是违禁词吗?这些词哪怕你再怎么优化,都不会给你收录,收录了也不会给你放出来,甚至会因此导致网站被降权K站。...放牛娃工具包就能实现图片批量导入关键词,一键查询,查询结果分开保存,最终得到违规和正常的两个txt文档。...SEO优化是一个漫长的过程,站长付出很多,因此要尽量减少在优化过程中出现违规优化的情况,否则付出很多心血就白费了。
工厂人员违规行为识别借助yolov5深度学习框架技术,YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使得其速度与精度都得到了极大的性能提升,具体包括:输入端的...图片在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。
漫途AI违规行为监测模块采用视频边缘计算终端设备,高清摄像头传感器对工厂人员违规行为进行监测和识别。通过AI识别算法,自动识别人的不安全行为、物的不安全状态,有效防范安全事故。...图片MTA461视频边缘计算终端一款是融合了人体、行为、图像识别等视觉能力与硬件的软硬一体产品。...漫途AIBOX基于深度学习神经网络算法,搭载高性能AI专用芯片进行边缘计算,可对接主流摄像头,接入外部高清视频,自动进行检测和抓拍,并以视频、图片、文本等多种形式输出告警事件,是构建大规模智能高清视频结构化数据的选择...设备采用高性能人工智能处理器结合先进的深度学习算法实现人车、物的抓拍与识别功能,处理速度快、精度高,可实现多路高清摄像头同步处理。
序 本文简单介绍下敏感词或者脏词检测算法。 经典AC算法 经典的AC算法由三部分构成,goto表,fail表和output表,共包含四种具体的算法,分别是计算三张查找表的算法以及AC算法本身。...this.value = value; this.isLast = isLast; } //...... } doc 字符串多模式匹配:AC算法 Java实现DFA算法对敏感词、...广告词过滤功能 敏感词过滤的算法原理之 Aho-Corasick 算法 敏感词过滤的算法原理之DFA算法 AC自动机和Fail树 基于双数组的AC匹配算法学习
之前文章目标检测API 已经介绍过API的基本使用,这里就不赘述了,直接上本次内容的代码了,添加的内容并不多。...return image_process white_output = 'test_out.mp4' # 使用 VideoFileClip 函数从视频中抓取图片,subclip(1,9)代表识别视频中...1-9s这一时间段 clip1 = VideoFileClip("test.mp4").subclip(1,9) # 用fl_image函数将原图片替换为修改后的图片,用于传递物体识别的每张抓取图片 white_clip...,那么怎样实时的对现实生活中的目标进行检测呢?...---- 更新 2020.05.04 更新一个单独运行的实时获取摄像头进行检测脚本: import argparse import tensorflow as tf import numpy as np
一:简介 最近项目在做了身份证银行卡识别之后,开始实现人脸识别和活体识别,其中人脸识别包括人脸入库、人脸查找、人脸1:N对比、人脸N:N对比,另外活体识别运用在安全登录功能。...在实际运用中,有很多app为了高度保证用户使用的安全问题,除了常规的账号密码登录之外,相继实现了指纹登录,手势登录,第三方登陆(QQ、微信、支付宝)、刷脸登录,接下里我就和大家分享一下如何实现人脸识别的活体检测...二:实现思路分析 点击识别按钮,调用相机 CameraRules类,检测相机权限 初始化页面,创建摄像页面,创建张嘴数据和摇头数据 开启识别,脸部框识别 脸部部位识别,脸部识别判断是否检测到人脸 检测到人脸之后...CameraRules类,检测相机权限 //检测相机权限+(BOOL)isCapturePermissionGranted{ if([AVCaptureDevice respondsToSelector...脸部部位识别,脸部识别判断是否检测到人脸 for(id key in keys){ id attr=[landmarkDic objectForKey:key]; if
摔倒检测跌倒识别检测基于YOLOv5技术来实现的图像识别,是计算机视觉的基础算法,例如VGG,GoogLeNet,ResNet等,这类算法主要是判断图片中目标的种类。...目标检测算法和图像识别算法类似,但是目标检测算法不仅要识别出图像中的物体,还需要获得图像中物体的大小和位置,使用坐标的形式表示出来。...图片mmpose不同于yolo,SSD等目标检测模型,在视频中进行关节点检测的速度要小于目标检测,即使在边缘计算的盒子上进行部署,也很难对人群进行大规模的关键点检测和判断,因此关键点检测常用于智能运动检测等小规模人群场景...,图上所示是先使用yolo进行预判断图片openpose和其他关键点检测模型只是给出人体各个器官的点位坐标,而具体需要识别什么,就要自行通过这些坐标进行算法设计,比如引体向上计数,可以通过判断头部节点与肘部节点的坐标进行判断计数...,对于摔倒,可以通过判断视频前后帧的头部,腰部等关节点进行检测,判断是否摔倒。
皮带断裂识别检测系统通过通过opencv深度学习yolo计算机视觉识别技术对煤矿皮带运行状态进行全天候实时监测,当皮带断裂识别检测系统监测到煤矿皮带断裂撕裂时立即抓拍告警存档同步回传异常信息到后台监控平台提醒后台人员发现皮带隐患点及时检修...图片YOLO系列算法是一类典型的one-stage目标检测算法,其利用anchor box将分类与目标定位的回归问题结合起来,从而做到了高效、灵活和泛化性能好。...Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box(边界框) 的位置及其所属的类别。...图片Yolo模型采用预定义预测区域的方法来完成目标检测,具体而言是将原始图像划分为 7x7=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个对象的矩形框),总共...我们将其理解为98个预测区,很粗略的覆盖了图片的整个区域,就在这98个预测区中进行目标检测。图片
人员跌倒检测识别预警系统通过python+opencv深度学习网络模型架构,人员跌倒检测识别预警系统实时监测老人的活动状态,通过图像识别和行为分析算法,对老人的姿态、步态等进行检测和识别,一旦系统检测到跌倒事件...人员跌倒检测模型选择使用Python语言。...关于人员跌倒视觉上人体运动分析和识别的方法论体系有很多种,将动作从视频序列中人的姿态和运动信息恢复过来,这属于一个回归问题,而人体行为识别是一个分类问题,这2个问题有很多类似点,比如说其特征的提取和描述很多是通用的...将人体行为识别分为3部分,即移动识别(movement),动作识别(action)和行为识别(activity),这3种分类分别于低层视觉,中层视觉,高层视觉相对应。...之所以人员跌倒检测模型使用Python,是因为Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。
如果现在你们入门的朋友,选择了目标检测类,你们可以没事玩玩今天说的框架和网络,这个过程真的可以学习很多东西,只要你愿意花费时间和精力去深入,现在我们闲话少说,直接进入正题。...在目标检测中,有很多经典的网络框架,比如RCNN,SSP,Fast RCNN。其中Fast RCNN就使用Selective Search来进行候选区域,但是速度依然不够快。...但是,Faster RCNN需要对两万个Anchor Box先判断是否是目标(目标判定),然后再进行目标识别,分成了两步。 今天就来讲讲怎么简单操作该网络,以便后期有兴趣的朋友再次基础上做出改进。...cls_score中num_output:2,bbox_pred中num_output:8 (2)stage1_rpn_train.pt和stage2_rpn_train.pt修改参数: num_class:2(识别...由于今天是端午假,大家都会吃粽子,所以今天的目标检测就是“粽子”,通过各种渠道得到粽子的训练和测试数据集,最后得到如下部分的结果可视化图。 ?
渣土车识别检测系统通过yolo网络架构对现场渣土车进行实时分析检测,一旦渣土车识别检测系统发现渣土车立即抓拍预警,提醒后台人员及时处理。我们使用YOLO(你只看一次)算法进行对象检测。...YOLO是一个聪明的卷积神经网络(CNN),用于实时进行目标检测。该算法将单个神经网络应用于完整的图像,然后将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框是由预测的概率加权的。
工厂人员着装识别检测,依据智能视频分析和神经网络算法技术,实时分析和识别现场监控视频画面信息。...工厂人员着装识别检测针对不穿工装的行为及时报警抓拍,将警报截屏和视频保存到数据库系统中发给后台,并把违规记录推送到有关人员。报警记录和警报截屏可以根据时间段查询,助力施工现场智能化管理。...图片当实际操作人员进到作业范围时,也要依照操作流程穿戴工装,但很多操作人员一般不按规定佩戴工装,这种违规行为给作业实际操作人员带来一定的安全隐患,作为后台监督人员不能及时有效地提醒制止现场人员违规行为,...图片工厂人员着装识别检测依据智能视频分析技术,能够实现全天候不间断,自动发觉管控区域范围中人员不穿工装行为,降低误报和漏报现象。...工厂人员着装识别检测集成到智能门禁系统中,当作业人员进到防护区域进行工作时,工厂人员着装识别检测需检测是否穿戴工作服,若未穿戴工作服则无法开启门禁,这样可以提升安全作业的效率降低危险意外的发生。图片
形状识别中常见的即是矩形框的识别,识别的主要步骤通常是:图像二值化,查找轮廓,四边形轮廓筛选等。当识别的目标矩形有一条边被部分遮挡,如图1所示,传统的识别方法就不能达到识别的目的。...图1 ---- 在这里,提供一种识别的思路,仅供参考。识别的最终目标就是想识别出身份证的四条边,通过计算四条边的交点最后得到四边形的轮廓。...主要涉及的问题有如下几点: 直线检测 直线聚类 直线筛选 交点计算 交点排序 ---- 1.直线检测 常规直线检测方法即是Hough。这里推荐使用一种比较新的直线检测算法LSD。...图2和图3分别是Hough直线检测与LSD直线检测的结果示意图。 对于LSD算法得到的结果,可以根据直线的长度进行初步的筛选,得到更好的检测结果,提高后期处理效率。如图4所示。...具体角度的计算请参考直线检测之极坐标表示。 代码如下: 将图4中检测到的所有直线线段利用极坐标表示,然后进行分类,同类的直线分配相同的标签号。
有问题欢迎微信交流:lp9628 工业器件标定与识别(如下图所示): ----> ----> 代码实现: 主要流程:直方图均衡化,去除噪声,二值化,查找轮廓,选出需要轮廓。
Adaboost人脸检测算法,是基于积分图、级联检测器和Adaboost算法的方法,该方法能够检测出正面人脸且检测速度快。...---- 现在用传统的技术已经不能再有新的突破,所以现在流行了DL架构,打破了人类的极限,又将检测,识别,跟踪等技术上升到另一个高度。 现在来简单讲讲最近几年神经网络的牛X之处。...对了,现在不是因为图像中的人脸检测,识别都已经很出色了,很多团队都做到接近满分了,所以现在来说说未来的趋势,也许这已经不算趋势,因为现在已经有很多人在这条路上摸爬打滚,而且有些团队也有一些成就,希望接下来大家在这领域都能取得好成就...---- ---- ---- ---- 再来说说VALSE 2017 VALSE 的发起者之一——中科院计算所的山世光研究员的报告:《人脸检测与识别年度进展概述》 ?...Face Database B (http://cvc.yale.edu/projects/yalefaces/yalefaces.html) ---- 最后我附上我近期做的效果图,是基于视频中人脸检测与识别的
数平精准推荐团队场景文本检测技术 1、文本检测技术 文本检测是场景文本识别的前提条件,要解决的问题是如何在杂乱无序、千奇百怪的复杂场景中准确地定位出文字的位置。...例如,Faster RCNN中Anchor的设置并不适合文本检测任务,而是针对物体检测任务来设计的,需要调节;另外,Anchor为正矩形,而文字存在倾斜畸变等,如果用正矩形检测,得到的文本检测结果无法满足后续对文字进行识别的要求...OCR识别模块属于多分类问题,对识别效果影响大的因素包括:复杂背景、艺术字体、低分辨率、非均匀光照、图像退化、字符形变、多语言混合、文本行复杂版式、检测框字符残缺,等等。...PhotoOCR是谷歌公司提出的一套完整OCR识别系统,包含文字区域检测、文本行归并、过分割、基于Beam Search的分割区域的组合、基于HOG特征和全连接神经网络的单字符分类、基于ngram方法的识别结果校正...基于CNN的识别算法,代表性论文是[3]。该方法由两部分构成,检测模块采用基于 region proposal 和滑动窗的方法切出词条,识别部分采用 7层CNN对整词分类,如图4所示。 ?
领取专属 10元无门槛券
手把手带您无忧上云