首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python3 机器学习简明教程

    1 机器学习介绍     1.1 什么是机器学习     1.2 机器学习的应用     1.3 机器学习基本流程与工作环节         1.3.1 数据采集与标记         1.3.2 数据清洗         1.3.3 特征选择         1.3.4 模型选择         1.3.5 训练和测试         1.3.6 模型使用     1.4 机器学习算法一览 2 Python 3 机器学习软件包     2.1 多种机器学习编程语言比较     2.2 开发环境 Anaconda 搭建         2.2.1 Windows         2.2.2 macOS         2.2.3 Linux     2.3 Jupyter Notebook 介绍     2.4 Spyder 介绍     2.5 Numpy 介绍         2.5.1 Numpy 数组         2.5.2 Numpy 运算         2.5.3 Numpy Cheat Sheet     2.6 Pandas 介绍         2.6.1 十分钟入门 pandas         2.6.2 Pandas Cheat Sheet     2.7 Matplotilb 介绍         2.7.1 Pyplot 教程         2.7.2 plots 示例         2.7.3 Matplotilb Cheat Sheet     2.8 scikit-learn 介绍         2.8.1 scikit-learn 教程         2.8.2 scikit-learn 接口         2.8.3 scikit-learn Cheat Sheet     2.9 数据预处理         2.9.1 导入数据集         2.9.2 缺失数据         2.9.3 分类数据         2.9.4 数据划分         2.9.5 特征缩放         2.9.6 数据预处理模板 3 回归     3.1 简单线性回归         3.1.1 算法原理         3.1.2 预测函数         3.1.3 成本函数         3.1.4 回归模板     3.2 多元线性回归     3.3 多项式回归         3.3.1 案例:预测员工薪水     3.4 正则化         3.4.1 岭回归         3.4.2 Lasso 回归     3.5 评估回归模型的表现         3.5.1 R平方         3.5.2 广义R平方         3.5.3 回归模型性能评价及选择         3.5.4 回归模型系数的含义 4 分类     4.1 逻辑回归         4.1.1 算法原理         4.1.2 多元分类         4.1.3 分类代码模板         4.1.4 分类模板     4.2 k-近邻         4.2.1 算法原理         4.2.2 变种     4.3 支持向量机         4.3.1 算法原理         4.3.2 二分类线性可分         4.3.3 二分类线性不可分支持         4.3.4 多分类支持向量机         4.3.5 Kernel SVM - 原理         4.3.6 高维投射         4.3.7 核技巧         4.3.8 核函数的类型     4.4 决策树         4.4.1 算法原理         4.4.2 剪枝与控制过拟合         4.4.3 信息增益         4.4.4 最大熵与EM算法 5 聚类     5.1 扁平聚类         5.1.1 k 均值         5.1.2 k-medoids     5.2 层次聚类         5.2.1 Single-Linkage         5.2.2 Complete-Linkage 6 关联规则     6.1 关联规则学习     6.2 先验算法Apriori     6.3 FP Growth 7 降维     7.1 PCA(主成分分析)     7.2 核 PCA     7.3 等距特征映射IsoMap 8 强化学习     8.1 置信区间上界算法         8.1.1 多臂老虎机问题

    03

    基于马尔科夫边界发现的因果特征选择算法综述

    摘要 因果特征选择算法(也称为马尔科夫边界发现)学习目标变量的马尔科夫边界,选择与目标存在因果关系的特征,具有比传统方法更好的可解释性和鲁棒性.文中对现有因果特征选择算法进行全面综述,分为单重马尔科夫边界发现算法和多重马尔科夫边界发现算法.基于每类算法的发展历程,详细介绍每类的经典算法和研究进展,对比它们在准确性、效率、数据依赖性等方面的优劣.此外,进一步总结因果特征选择在特殊数据(半监督数据、多标签数据、多源数据、流数据等)中的改进和应用.最后,分析该领域的当前研究热点和未来发展趋势,并建立因果特征选择资料库(http://home.ustc.edu.cn/~xingyuwu/MB.html),汇总该领域常用的算法包和数据集. 高维数据为真实世界的机器学习任务带来诸多挑战, 如计算资源和存储资源的消耗、数据的过拟合, 学习算法的性能退化[1], 而最具判别性的信息仅被一部分相关特征携带[2].为了降低数据维度, 避免维度灾难, 特征选择研究受到广泛关注.大量的实证研究[3, 4, 5]表明, 对于多数涉及数据拟合或统计分类的机器学习算法, 在去除不相关特征和冗余特征的特征子集上, 通常能获得比在原始特征集合上更好的拟合度或分类精度.此外, 选择更小的特征子集有助于更好地理解底层的数据生成流程[6].

    04
    领券