首页
学习
活动
专区
圈层
工具
发布

【说站】Python Pandas数据框如何选择行

Python Pandas数据框如何选择行 说明 1、布尔索引( df[df['col'] == value] ) 2、位置索引( df.iloc[...]) 3、标签索引( df.xs(...))...假设我们的标准是 column 'A'=='foo' (关于性能的注意事项:对于每个基本类型,我们可以通过使用 Pandas API 来保持简单,或者我们可以在 API 之外冒险,通常进入 NumPy,...设置 我们需要做的第一件事是确定一个条件,该条件将作为我们选择行的标准。我们将从 OP 的案例开始column_name == some_value,并包括一些其他常见用例。...借用@unutbu: import pandas as pd, numpy as np df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'...数据框选择行的方法,希望对大家有所帮助。

1.8K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas中的loc和iloc_pandas获取指定数据的行和列

    大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...> 6] 结果: (6)也可以进行切片操作 # 进行切片操作,选择B,C,D,E四列区域内,B列大于6的值 data1 = data.loc[ data.B >6, ["B","C"...3, 2:4]中的第4行、第5列取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    14.5K21

    对比Excel,Python pandas删除数据框架中的行

    标签:Python与Excel,pandas 对于Excel来说,删除行是一项常见任务。本文将学习一些从数据框架中删除行的技术。...准备数据框架 我们将使用前面系列中用过的“用户.xlsx”来演示删除行。 图1 注意上面代码中的index_col=0?如果我们将该参数留空,则索引将是基于0的索引。...使用.drop()方法删除行 如果要从数据框架中删除第三行(Harry Porter),pandas提供了一个方便的方法.drop()来删除行。...inplace:告诉pandas是否应该覆盖原始数据框架。 按名称删除行 图2 我们跳过了参数axis,这意味着将其保留为默认值0或行。因此,我们正在删除索引值为“Harry Porter”的行。...这次我们将从数据框架中删除带有“Jean Grey”的行,并将结果赋值到新的数据框架。 图6

    5.6K20

    用过Excel,就会获取pandas数据框架中的值、行和列

    在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...语法类似,但我们将字符串列表传递到方括号中。请注意双方括号: dataframe[[列名1,列名2,列名3,…]] 图6 使用pandas获取行 可以使用.loc[]获取行。...获取1行 图7 获取多行 我们必须使用索引/切片来获取多行。在pandas中,这类似于如何索引/切片Python列表。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。

    23.5K60

    GitHub排名前20的Pandas, NumPy 和SciPy函数

    选文|姚佳灵 翻译|田晋阳 校对|姚佳灵 大数据文摘编辑作品 转载具体要求见文末 编者按:由于文中提到的内容太多,建议大家在阅读前看下完整的内容,欢迎大家在评论区讨论留言,点击阅读全文即可查看完整内容...几个月前,我看到一篇博文根据Github上的实例,列出了一些最流行的python库中最常用的函数/模块。我已将这些结果做了可视化并写下每个库中排名前10的例子。...Github上最流行的Pandas,Pandas.DataFrame, NumPy和SciPy函数。...例如,我们可以看到,尽管pd.Timestamp在Github上的所有实例中占有很大比例,但在项目中的使用频率并不如其它函数。 ◆ ◆ ◆ Pandas ?...3)arange: 在两个限值之间创建一个均等间隔值的数组。 8) mean:得到一个列表/数组所有数值的平均值或者行或列的平均值。 SciPy ?

    1K70

    网站制作前网站主机空间的选择

    无论是企业公司还是学校教育机构等事业单位,网站制作完成之后往往需要将网站上传配置到相应的主机空间中。网站的主机空间的选择也是一项重要的工作,通常是由网站制作公司来进行主机空间的购买配置工作。...那么在选择网站的主机空间时,都有哪些值得注意的,或者说是都需要关注主机空间的哪些特性选项。...1,网站主机空间容量的大小选择 通常现在网站主机空间容量都最少1G,当然现在仍然有的网站制作公司给客户提供200M等类似大小的空间,收费还不低。...3,网站主机空间的系统及配置是否适配 网站程序使用不同的制作语言开发的,网站主机空间的系统和配置是不相同的,当然如果是有网站制作公司来选择网站空间的话,客户对此可以不用多费心。...4,网站主机空间的内存及带宽 网站主机空间的内存和带宽对于网站打开速度及网站同时访问的数量级影响很大,因而在选择网站主机空间时,要根据自身网站的流量及特性,选择满足网站需要的网站主机空间。

    8.9K30

    我对 Twitter 前 10 行源代码的理解

    我很喜欢问的一个问题是:“解释一下 Twitter 源代码的前十几行”。 我认为这是一个很简单的测试,可以借此了解应聘者对前端基础知识的掌握程度。本文列出了这个问题的最佳答案。...3 第 3 行: 最佳答案:源代码中的元标签用来提供关于这个文件的元数据。...把这个标签放在代码开头附近,这很重要,这样浏览器就不会在遇到这一行之前解析太多的文本;我觉得可以定个这样的规则,就是把它放在文档的前 1000 个字节里,但我认为最好的做法是把它放在的正上方...11 意外收获——第 11 行:body{margin:0;} Twitter 源代码中的这一行特别有趣,因为你可以跟进一个问题,即网页重置和规范化之间有什么区别。...因为 Twitter 主要是一个客户端 React 应用,所以源代码只有几十行。即使这样还是有很多东西可以学!在 Twitter 的源代码中,还有一些更有趣的行,我留给读者做练习。

    1.2K20

    Pandas中选择和过滤数据的终极指南

    Python pandas库提供了几种选择和过滤数据的方法,如loc、iloc、[]括号操作符、query、isin、between等等 本文将介绍使用pandas进行数据选择和过滤的基本技术和函数。...无论是需要提取特定的行或列,还是需要应用条件过滤,pandas都可以满足需求。 选择列 loc[]:根据标签选择行和列。...df.loc[df['Customer Country'] == 'United States', 'Customer Country'] = 'USA' iloc[]:也可以为DataFrame中的特定行和列并分配新值...提供了很多的函数和技术来选择和过滤DataFrame中的数据。...比如我们常用的 loc和iloc,有很多人还不清楚这两个的区别,其实它们很简单,在Pandas中前面带i的都是使用索引数值来访问的,例如 loc和iloc,at和iat,它们访问的效率是类似的,只不过是方法不一样

    71310

    Pandas中高效的选择和替换操作总结

    这两项任务是有效地选择特定的和随机的行和列,以及使用replace()函数使用列表和字典替换一个或多个值。...使用.iloc[]和.loc[]选择行和列 这里我们将介绍如何使用.iloc[] & .loc[] pandas函数从数据中高效地定位和选择行。...在下面的例子中,我们选择扑克数据集的前500行。首先使用.loc[]函数,然后使用.iloc[]函数。...这是因为.iloc[]函数利用了索引的顺序,索引已经排序因此速度更快。 我们还可以使用它们来选择列,而不仅仅是行。在下一个示例中,我们将使用这两种方法选择前三列。...所以最好使用.iloc[],因为它更快,除非使用loc[]更容易按名称选择某些列。 替换DF中的值 替换DataFrame中的值是一项非常重要的任务,特别是在数据清理阶段。

    1.3K30
    领券