学习
实践
活动
专区
工具
TVP
写文章

数据透视入门

今天跟大家分享有关数据透视入门的技巧! 数据透视是excel附带功能中为数不多的学习成本低、投资回报率高、门槛低上手快的良心技能! 然后我们将利用几几步简单的菜单操作完成数据透视的配置环境: 首先将鼠标放在原数据区域的任一单元格,选择插入——透视; 在弹出的菜单中,软件会自动识别并完成原数据区域的选区工作。 ? 你需要做的是定义好数据透视的输出位置: 新工作:软件会为透视输出位置新建一个工作; 现有工作:软件会将透视输出位置放在你自定义的当前工作目标单元格区域。 此时你选定的透视存放单元格会出现透视的 布局标志,同时在软件右侧出现数据透视表字段菜单,顶部菜单栏也会自动出现数据透视表工具菜单。 在右侧的数据透视表字段菜单中,分上下布局,上面的带选择字段,下侧是字段将要在透视中的出现的位置。

1.5K60

玩转Pandas透视

数据透视(Pivot Table)是常用的数据汇总工具,可以通过控制数据的排列灵活地进行数据分析,进而挖掘出数据中最有价值的信息。掌握数据透视,已经成为数据分析从业者必备的一项技能。 在python中我们可以通过pandas.pivot_table函数来实现数据透视的功能。 第一个透视 # 查看不同性别的存活率 table = pd.pivot_table(df, index=["sex"], values="survived") print(table) 仔细观察透视发现,与上面【3】中的"添加一个列级索引",在分组聚合效果上是一样的,都是将每个性别组中的成员再次按照客票级别划分为3个小组。 保存透视 数据分析的劳动成果最后当然要保存下来了,我们一般将透视保存为excel格式的文件,如果需要保存多个透视,可以添加到多个sheet中进行保存。 save_file = ".

2.8K30
  • 广告
    关闭

    2023新春采购节

    领8888元新春采购礼包,抢爆款2核2G云服务器95元/年起,个人开发者加享折上折

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    openpyxl刷新透视

    一、概述 openpyxl提供对透视的读取支持,以便将它们保留在现有文件中。pivot的规范(虽然是扩展的)并不明确,也不希望客户机代码能够创建pivot。 但是,应该可以编辑和操作现有的透视,例如更改它们的范围或是否应该自动更新设置。 需求:目前是数据源改变时,透视的数据没有变化,因此需要刷新透视才行。 TypeError: Value must be a sequence 创建透视 现有一个4567.xlsx,内容如下: ? 在这个,我们来创建一下透视。 点击插入-->数据透视-->数据透视 区域选择数据部分 ?  点击确定 ?  选择2个列,如下图 ? 效果如下: ? 准备好了,先来删除最后一条数据,赵六。会发现透视的总计数字并没有变化。 ? 使用openpyxl来刷新一下透视 # !

    1K20

    一维和二维透视及逆透视

    小勤:前面你的很多个关于PowerQuery的内容里都涉及到逆透视,这到底是什么意思呢?这个概念一直觉得似懂非懂的,有没有简单点的语句总结一下? 大海:嗯,一维和二维的概念了解吗? 首先,关于一维和二维透视和逆透视,我先做个简单的例子给你们看一下。 大海:其实,所谓透视,就是从一维到二维(甚至更多维度)形成交叉汇总的过程;相反,从二维向一维的过程就是逆透视。 那么在逆透视的时候,我们是将横着的那些内容(列:上面的ABCDE)变成竖着(行),而不需要转变的列(店铺)可以理解为一个支点(轴),即横着的内容(列:ABCDE)以不需要转变的列(店铺)为中心,拉成一个清单 最后的建议是,有时间先多练习一下数据透视。比如可以练一下没有PQ的时候,用数据透视做逆透视的方法,具体参考案例《二维转一维用多重数据透视?弱爆了!》,体会一下两者之间的差别和优缺点。 这里也顺便说一下,学Power系列套件的话,最好是数据透视的技能和思维要练好,这是往上走的关键点,尤其是到了后面的Power Pivot和BI的东西,公式函数部分反而不需要太精通都可以。

    43820

    Pandas进阶|数据透视与逆透视

    数据透视将每一列数据作为输入,输出将数据不断细分成多个维度累计信息的二维数据。 在实际数据处理过程中,数据透视使用频率相对较高,今天云朵君就和大家一起学习pandas数据透视与逆透视的使用方法。 默认聚合所有数值列 index 用于分组的列名或其他分组键,出现在结果透视的行 columns 用于分组的列名或其他分组键,出现在结果透视的列 aggfunc 聚合函数或函数列表,默认为'mean' 与 GroupBy 类似,数据透视中的分组也可以通过各种参数指定多个等级。 是一种特殊的数据透视默认是计算分组频率的特殊透视(默认的聚合函数是统计行列组合出现的次数)。

    76310

    数据透视多表合并

    今天跟大家分享有关数据透视多表合并的技巧! 利用数据透视进行多表合并大体上分为两种情况: 跨合并(多个在同一工作薄内) 跨工作薄合并(多个分别在不同工作薄内) 跨合并(工作薄内合并) 对于结构的要求: 一维结构 列字段相同 无合并单元格 此时软件会生成一个默认的透视样式,需要我们自己对透视结构、字段做细微调整。 ? 将页字段名重命名为地区,将行标签命名为类别(双击或者在左上角名称框中命名) ? 如果你想让地区字段进入到透视的行位置,也很简单,把地区字段拖入行(类别位置之前)。 ? 间合并(工作薄内)就是这么简单。 透视的样式可以通过套用表格样式随意调整。

    5K40

    pandas系列7-透视和交叉

    透视pivot_table是各种电子表格和其他数据分析软件中一种常见的数据分析汇总工具。 根据一个或者多个键对数据进行聚合 根据行和列上的分组键将数据分配到各个矩形区域中 一文看懂pandas的透视 Pivot_table 特点 灵活性高,可以随意定制你的分析计算要求 脉络清晰易于理解数据 操作性强,报表神器 参数 data: a DataFrame object,要应用透视的数据框 values: a column or a list of columns to aggregate, 关于pivot_table函数结果的说明: df是需要进行透视的数据框 values是生成的透视中的数据 index是透视的层次化索引,多个属性使用列表的形式 columns是生成透视的列属性 Crosstab 一种用于计算分组频率的特殊透视

    36210

    在pandas中使用数据透视

    Python大数据分析 记录 分享 成长 什么是透视? 经常做报表的小伙伴对数据透视应该不陌生,在excel中利用透视可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。 透视是一种汇总了更广泛数据的统计信息。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: 而数据透视可以快速抽取有用的信息: pandas也有透视? pandas作为编程领域最强大的数据分析工具之一,自然也有透视的功能。 在pandas中,透视操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据,解决大麻烦。 、行、列: 参数aggfunc对应excel透视中的值汇总方式,但比excel的聚合方式更丰富: 如何使用pivot_table?

    38020

    技术|数据透视,Python也可以

    对于习惯于用Excel进行数据分析的我们来说,数据透视的使用绝对是排名仅次于公式使用的第二大利器。特别是在数据预处理的时候,来一波透视简直是初级得不能再初级的操作了。 接下来就给大家讲一下如何在Python中实现数据透视的功能。 ? pivot ? pd.pivot_table 这就是实现数据透视表功能的核心函数。显而易见,这个函数也是基于Pandas的。 在使用这个功能之前,需要先import pandas as pd哦~ pivot这个单词本身就已经告诉我们这个函数实现的功能类似于数据透视(数据透视:data pivot) 需要指定的参数也和Excel 我们先回顾一下使用Excel进行数据透视的操作过程: 首先,选中希望进行数据透视的数据,点击数据透视,指定数据透视的位置。 ? ? 敲黑板,重点来了: index=列 colums=行 values=值 有了这三个函数,最最最基础的一个数据透视就算是完成了。

    68120

    数据透视多表合并|字段合并

    今天要跟大家分享的内容是数据透视多表合并——字段合并! 因为之前一直都没有琢磨出来怎么使用数据透视做横向合并(字段合并),总觉得关于合并绍的不够完整,最近终于弄懂了数据透视表字段合并的思路,赶紧分享给大家! 数据仍然是之前在MS Query字段合并使用过的数据; 四个,都有一列相同的学号字段,其他字段各不相同。 建立一个新工作作为合并汇总表,然后在新中插入数据透视。 Ctrl+d 之后迅速按p,调出数据透视向导 选择多重合并计算选项: ? 选择自定义计算字段 ? 分别添加三个区域,页字段格式设置为0(默认)。 ? 此时已经完成了数据之间的多表字段合并! ? 相关阅读: 数据透视多表合并 多表合并——MS Query合并报表

    5K80

    在pandas中使用数据透视

    什么是透视? 经常做报表的小伙伴对数据透视应该不陌生,在excel中利用透视可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。 透视是一种汇总了更广泛数据的统计信息。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: ? 而数据透视可以快速抽取有用的信息: ? pandas也有透视? pandas作为编程领域最强大的数据分析工具之一,自然也有透视的功能。 在pandas中,透视操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据,解决大麻烦。 注意,在所有参数中,values、index、columns最为关键,它们分别对应excel透视中的值、行、列: ? 参数aggfunc对应excel透视中的值汇总方式,但比excel的聚合方式更丰富: ? 如何使用pivot_table? 下面拿数据练一练,示例数据如下: ?

    52040

    PQ-数据转换10:一维和二维透视及逆透视

    小勤:前面你的很多个关于PowerQuery的内容里都涉及到逆透视,这到底是什么意思呢?这个概念一直觉得似懂非懂的,有没有简单点的语句总结一下? 大海:嗯,一维和二维的概念了解吗? 首先,关于一维和二维透视和逆透视,我先做个简单的例子给你们看一下。 大海:其实,所谓透视,就是从一维到二维(甚至更多维度)形成交叉汇总的过程;相反,从二维向一维的过程就是逆透视。 那么在逆透视的时候,我们是将横着的那些内容(列:上面的ABCDE)变成竖着(行),而不需要转变的列(店铺)可以理解为一个支点(轴),即横着的内容(列:ABCDE)以不需要转变的列(店铺)为中心,拉成一个清单 最后的建议是,有时间先多练习一下数据透视。比如可以练一下没有PQ的时候,用数据透视做逆透视的方法,具体参考案例《二维转一维用多重数据透视?弱爆了!》,体会一下两者之间的差别和优缺点。 这里也顺便说一下,学Power系列套件的话,最好是数据透视的技能和思维要练好,这是往上走的关键点,尤其是到了后面的Power Pivot和BI的东西,公式函数部分反而不需要太精通都可以。

    64720

    扫码关注腾讯云开发者

    领取腾讯云代金券