首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

统计师的Python日记【第七天:数据清洗(1)】

上一篇的数据合并,以及本篇的数据清洗,都是非常非常实用的技能。我们用Python做数据分析,其实会有80%的功夫花在这些操作上面。...以上是按照“有两行数据,这两行数据的所有变量值都一样,这么这两行就算重复数据”,但有时候我们会只根据一个变量来剔除重复,比如值根据Areas这个变量,那么A/B/C/D四个地区只会保留第一条,传入take_last...首先可以用 describe() 进行一个描述分析,在第五天的学习中(第5天:Pandas,露两手)已经学过如何对数据进行描述: ?...替换 我要把异常的年龄替换成缺失,把package等于-9的替换成0(换成0是因为,不抽烟其实也就是抽烟数量为0,这样还能少一些缺失值)。...替换的方式有2种,字典,或者替换关系组成的数组: (1)data.replace([A, B], [A_R, B_R]),如果这里替换之后的值A_R和B_R是一样的,那么[A_R,B_R]直接是A_R就可以了

1.7K101

Python入门之数据处理——12种有用的Pandas技巧

由此我们得到了需要的结果。 注:第二个输出中使用了head()函数,因为结果中包含很多行。 # 3–填补缺失值 ‘fillna()’可以一次性解决:以整列的平均数或众数或中位数来替换缺失值。...现在,我们可以填补缺失值并用# 2中提到的方法来检查。 #填补缺失值并再次检查缺失值以确认 ? ? # 4–透视表 Pandas可以用来创建MS Excel风格的透视表。...例如,在本例中一个关键列是“贷款数额”有缺失值。我们可以根据“性别”,“婚姻状况”和“自由职业”分组后的平均金额来替换。 “贷款数额”的各组均值可以以如下方式确定: ? ?...# 7–合并数据帧 当我们需要对不同来源的信息进行合并时,合并数据帧变得很重要。假设对于不同物业类型,有不同的房屋均价(INR/平方米)。让我们定义这样一个数据帧: ? ?...一些算法(如逻辑回归)要求所有的输入都是数值型,因此名义变量常被编码为0, 1…(n-1) 2. 有时同一个类别可以用两种方式来表示。

5K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在R语言中进行缺失值填充:估算缺失值

    链式方程进行的多元插补 通过链式方程进行的多元插补是R用户常用的。与单个插补(例如均值)相比,创建多个插补可解决缺失值的不确定性。...如果X1缺少值,那么它将在其他变量X2到Xk上回归。然后,将X1中的缺失值替换为获得的预测值。同样,如果X2缺少值,则X1,X3至Xk变量将在预测模型中用作自变量。稍后,缺失值将被替换为预测值。...我们使用了预测均值匹配。 由于有5个估算数据集,因此可以使用complete()函数选择任何数据集。  还可以合并来自这些模型的结果,并使用pool()命令获得合并的输出。...这可以通过调整mtry和ntree参数的值来改善  。mtry是指在每个分割中随机采样的变量数。ntree是指在森林中生长的树木数量。...它也构建了多个插补模型来近似缺失值。并且,使用预测均值匹配方法。

    2.7K00

    Pandas部分应掌握的重要知识点

    索引器中括号内行列下标的位置上都允许使用切片和花式索引,下例中行使用切片,列使用花式索引。 注意:下面的3:5表示下标为3和4的两行,[0,2]表示下标为0和2的两列。...merge主要基于列值匹配而进行列合并,类似于SQL中的连接操作。...的过滤条件要求显式的指定某一列 六、处理缺失值 1、Pandas中缺失值的表示 Pandas表示缺失值的一种方法是使用NaN(Not a Number),它是一个特殊的浮点数;另一种是使用Python中的...() (2)统计一维的data中缺失值的个数: data.isnull().sum() 2 (3)统计二维的df中缺失值的个数: df = pd.DataFrame([[1, np.nan,...df.dropna(axis='columns', how='all') 3、 填充缺失值 (1)用单个值填充,下面的例子使用0来填充缺失值: df.fillna(0) (2)从前向后填充(forward-fill

    4700

    Python实战之字符串和文本处理

    PyCon starts 2013-3-13.' >>> 如果你打算用相同的模式做多次替换,考虑先编译它来提升性能 >>> import re >>> datepat = re.compile(r'(...text = ''.join(sample()) print (text) 字符串中插入变量 「你想创建一个内嵌变量的字符串,变量被它的值所表示的字符串替换掉。」...Python 并没有对在字符串中简单替换变量值提供直接的支持(类似shell那样)。但是通过使用字符串的format()方法来解决这个问题。...depth 的默认值是 0,返回调用栈顶部的帧。...尽管你可以改变 f_locals 的内容,但是这个修改对于后面的变量访问没有任何影响。所以,虽说访问一个栈帧看上去很邪恶,但是对它的任何操作不会覆盖和改变调用者本地变量的值。 设置完我们可以这样用。

    1.1K20

    如何用Pandas处理文本数据?

    ; ③ string类型在缺失值存储或运算时,类型会广播为pd.NA,而不是浮点型np.nan 其余全部内容在当前版本下完全一致,但迎合Pandas的发展模式,我们仍然全部用string来操作字符串。...dd0dd dtype: string (b)cat中的索引对齐 当前版本中,如果两边合并的索引不相同且未指定join参数,默认为左连接,设置join='left' s2 = pd.Series(list...ab* 1 *a 2 db dtype: string 三、替换 广义上的替换,就是指str.replace函数的应用,fillna是针对缺失值的替换,上一章已经提及。...提到替换,就不可避免地接触到正则表达式,这里默认读者已掌握常见正则表达式知识点,若对其还不了解的,可以通过这份资料来熟悉 3.1 str.replace的常见用法 s = pd.Series(['A',...(a)str.replace赋值参数不得为pd.NA 这听上去非常不合理,例如对满足某些正则条件的字符串替换为缺失值,直接更改为缺失值在当下版本就会报错 #pd.Series(['A','B'],dtype

    4.4K10

    linux shell指令大全整理

    用反引号“可以将一个命令的输出给另一个变量 directory=`pwd` echo $directory shell运算符 原生bash不支持简单的算术运算, 但是可以通过其他命令来实现, 比如awk...= 检测两个字符串是否不相等,不相等返回 true。 [ $a != $b ] 返回 true。 -z 检测字符串长度是否为0,为0返回 true。 [ -z $a ] 返回 false。...):stdin的文件描述符为0,Unix程序默认从stdin读取数据。...-i 0.2–》第一个包和第二个包之间间隔0.2s -w 2 –》只等待2s tr -s替换重复的字符 cut用来从标准输入或文本文件中剪切列或域 #!...代表一个字符 [abcd] 匹配abcd中的任何一个字符 [a-z] 表示范围a-z,中的任何一个字符 管道符 |:把前面命令的结果给后面的命令 arp -n|grep ether|tr -s '

    1.7K50

    听说Mysql你很豪横?-------------分分钟带你玩转SQL高级查询语句(常用查询,正则表达式,运算符)

    比如age= aa时,就将和这两行合并,其它字段(id,number)合并在一个单元格; ?...通配符主要用于替换字符串中的部分字符,通过部分字符的匹配将相关结果查询出来。...通常使用 NULL 来表示缺失的值,也就是在表中该字段是没有值的。如果在创建表时,限制某些字段不为空,则可以使用 NOT NULL 关键字,不使用则默认可以为空。...例如,创建一个表 test,该表包含不设置 NOT NULL 的字段,然后向表中插入不同的记录值,其中包括 NULL 值和实际有值的记录,最后通过 SELECT 查询字段中包括 NULL 和不包括 NULL...例如,若要判断一组数字或字母中哪个最小、哪个最大,可以通过使用 LEAST 和 GREATEST 来实现,具体操作如下所示。

    4K30

    1w 字的 pandas 核心操作知识大全。

    = ['低', '中', '高'] df['categories'] = pd.cut(df['salary'], bins, labels=group_names) 缺失值处理 # 检查数据中是否含有任何缺失值...df.isnull().values.any() # 查看每列数据缺失值情况 df.isnull().sum() # 提取某列含有空值的行 df[df['日期'].isnull()] # 输出每列缺失值具体行数...# 用均值替换所有空值(均值可以用统计模块中的几乎所有函数替换 ) s.astype(float) # 将系列的数据类型转换为float s.replace...(col1)[col2] # 返回中的值的平均值 col2,按中的值分组 col1 (平均值可以用统计模块中的几乎所有函数替换 ) df.pivot_table(index...df.corr() # 返回DataFrame中各列之间的相关性 df.count() # 返回非空值的每个数据帧列中的数字 df.max() # 返回每列中的最高值

    14.8K30

    R语言逻辑回归logistic模型分析泰坦尼克titanic数据集预测生还情况

    数据集(训练)是一些乘客(准确的说是889人)的数据集合,比赛的目标是根据一些特征,如服务等级、性别、年龄等来预测生存率(如果乘客幸存下来就是1,如果没有就是0)。...使用subset()函数,对原始数据集进行子集,只选择相关列。 现在需要考虑其他的缺失值。在拟合广义线性模型时,R可以通过在拟合函数中设置一个参数来处理它们。...然而,我个人更喜欢 "手动"替换缺失值。有不同的方法可以做到这一点,一个典型的方法是用平均数、中位数或现有数值来替换缺失的数值。我使用平均数。...Embarked中的缺失值,由于只有两个,我们将剔除这两行(我们也可以替换缺失值,保留数据点)。 data\[!is.na(Embarked),\] 在进行拟合之前,数据的清洗和格式化很重要。...通过设置参数type='response',R将以P(y=1|X)的形式输出概率。我们的决策边界将是0.5。如果P(y=1|X)>0.5,那么y=1,否则y=0。

    2.6K10

    《利用Python进行数据分析·第2版》第7章 数据清洗和准备7.1 处理缺失数据7.2 数据转换7.3 字符串操作7.4 总结

    在本章中,我会讨论处理缺失数据、重复数据、字符串操作和其它分析数据转换的工具。下一章,我会关注于用多种方法合并、重塑数据集。 7.1 处理缺失数据 在许多数据分析工作中,缺失数据是经常发生的。...中,我们采用了R语言中的惯用法,即将缺失值表示为NA,它表示不可用not available。...通过一个常数调用fillna就会将缺失值替换为那个常数值: In [33]: df.fillna(0) Out[33]: 0 1 2 0 -0.204708...对于许多数据集,你可能希望根据数组、Series或DataFrame列中的值来实现转换工作。...替换值 利用fillna方法填充缺失数据可以看做值替换的一种特殊情况。前面已经看到,map可用于修改对象的数据子集,而replace则提供了一种实现该功能的更简单、更灵活的方式。

    5.3K90

    【数据分析 R语言实战】学习笔记 第三章 数据预处理 (下)

    3.3缺失值处理 R中缺失值以NA表示,判断数据是否存在缺失值的函数有两个,最基本的函数是is.na()它可以应用于向量、数据框等多种对象,返回逻辑值。...complete.cases(),它同样返回逻辑值向量,但值与is.na()的相反:缺失值为FALSE,正常数据为TRUE,利用它来选取无缺失数据的行非常方便。...1 3 0 1 0 2 4 1 0 0 2 3 4 12 19 输出结果中的“1”表示没有缺失数据,“0”表示存在缺失数据。...is.na(salary)]) (3)多重插补法 多重插补(Multiple Imputation)是用于填补复杂数据缺失值的一种方法,该方法通过变量间关系来预测缺失数据,利用蒙特卡罗随机模拟方法生成多个完整数据集...在R中,选取数据子集用中括号[] > data[data$salary>6] 3.4.3数据排序 R中的排序函数sort()只能对向量进行简单的排序,对含有多变量的数据集,需要用order指令来完成,

    2K20

    Python数据分析之数据预处理(数据清洗、数据合并、数据重塑、数据转换)学习笔记

    b)用具体的值来进行替换,可用前后两个观测值的平均值修正该异常值 ​ c)不处理,直接在具有异常值的数据集上进行统计分析 ​ d)视为缺失值,利用缺失值的处理方法修正该异常值。  ​...to_replace:表示查找被替换值的方式 ​ value:用来替换任何匹配 to_replace的值,默认值None.  1.4 更改数据类型  ​ 在处理数据时,可能会遇到数据类型不一致的问题。...2.3 根据行索引合并数据  ​ join()方法能够通过索引或指定列来连接多个DataFrame对象  2.3.1 join()方法  on:名称,用于连接列名。...sort:根据连接键对合并的数据进行排序,默认为 False.  2.4 合并重叠数据  ​ 当DataFrame对象中出现了缺失数据,而我们希望使用其他 DataFrame对象中的数据填充缺失数据,则可以通过...Categories对象中的区间范围跟数学符号中的“区间”一样,都是用圆括号表示开区间,用方括号则表示闭区间。

    5.5K00

    panda python_12个很棒的Pandas和NumPy函数,让分析事半功倍

    这使NumPy能够无缝且高速地与各种数据库进行集成。  1. allclose()  Allclose() 用于匹配两个数组并且以布尔值形式输出。如果两个数组的项在公差范围内不相等,则返回False。...以下是Pandas的优势:  轻松处理浮点数据和非浮点数据中的缺失数据(表示为NaN)  大小可变性:可以从DataFrame和更高维的对象中插入和删除列  自动和显式的数据对齐:在计算中,可以将对象显式对齐到一组标签...,或者用户可以直接忽略标签,并让Series,DataFrame等自动对齐数据  强大灵活的分组功能,可对数据集执行拆分-应用-合并操作,以汇总和转换数据  轻松将其他Python和NumPy数据结构中的不规则的...、索引不同的数据转换为DataFrame对象  大数据集的智能标签的切片,高级索引和子集化  直观的合并和联接数据集  数据集的灵活重塑和旋  坐标轴的分层标签(每个刻度可能有多个标签)  强大的IO工具...将数据帧分配给另一个数据帧时,在另一个数据帧中进行更改,其值也会进行同步更改。为了避免出现上述问题,可以使用copy()函数。

    5.1K00

    强烈推荐Pandas常用操作知识大全!

    ['salary'], bins, labels=group_names) 缺失值处理 # 检查数据中是否含有任何缺失值 df.isnull().values.any() # 查看每列数据缺失值情况...pd.DataFrame(dict) # 从字典中,列名称的键,列表中的数据的值 导出数据 df.to_csv(filename) # 写入CSV文件 df.to_excel(filename)...# 用均值替换所有空值(均值可以用统计模块中的几乎所有函数替换 ) s.astype(float) # 将系列的数据类型转换为float s.replace...(col1)[col2] # 返回中的值的平均值 col2,按中的值分组 col1 (平均值可以用统计模块中的几乎所有函数替换 ) df.pivot_table(index...返回均值的所有列 df.corr() # 返回DataFrame中各列之间的相关性 df.count() # 返回非空值的每个数据帧列中的数字 df.max()

    15.9K20
    领券