使用matplotlib对几种常见的图形进行绘制 Matplotlib官网 如果想了解更多可查看官网。...import numpy as np import matplotlib.pyplot as plt %matplotlib inline #写了这个就可以不用写plt.show() plt.rcParams...,Y1,color = 'r') [format,png] 柱状图 data = [5,25,50,20] plt.bar(range(len(data)),data) [format,png] 水平绘制柱状图...df.plot.scatter(x='a', y='b') [format,png] df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d']) # 绘制柱状图
线型图是学习matplotlib绘图的最基础案例。我们来看看具体过程: ? 下面我们将两条曲线绘制到一个图形里: ? ? 可以看到这种方式下,两个线条共用一个坐标轴,并且自动区分颜色。...题外话:matplotlib其实是一个相当底层的工具,你可以从其基本组件中组装一个图标、显示格式、图例、标题、注释等等。...Pandas在此基础上对绘图功能进行了一定的封装,每个Series和DataFrame都有一个plot方法,一定要区分pandas的plot和matplotlib的plot方法。比如: ? ?...pandas和matplotlib的plot方法你愿意用哪个都行,但要注意参数格式和使用场景。
使用hist方法来绘制直方图: ? ?...绘制直方图,最主要的是一个数据集data和需要划分的区间数量bins,另外你也可以设置一些颜色、类型参数: plt.hist(np.random.randn(1000), bins=30,normed=...除了一维的直方图,还可以使用hist2d方法绘制二维的直方图: ? ? hist2d是使用坐标轴正交的方块分割区域,还有一种常用的方式是正六边形也就是蜂窝形状的分割。...Matplotlib提供的plt.hexbin就是满足这个需求的: plt.hexbin(x,y,gridsize=30, cmap='Blues') plt.colorbar(label='count
上篇文章介绍了使用matplotlib绘制折线图,参考:Python matplotlib绘制折线图,本篇文章继续介绍使用matplotlib绘制散点图。...一、matplotlib绘制散点图 # coding=utf-8 import matplotlib.pyplot as plt years = [2009, 2010, 2011, 2012, 2013...: scatter(): matplotlib中绘制散点图的函数。...比如我想预测2020年天猫双11的总成交额,通过对比的方式,简单分析一下这个趋势更接近指数函数还是更接近多次函数。...这里我只是简单对比一下,三次函数还有二次项、一次项和常数项,所以x^(3.3)中的0.3可以通过二次项、一次项和常数项来补充,指数函数的变化趋势太快,与双11总成交额的变化趋势差异很大。
用plt.scatter画散点图 scatter专门用于绘制散点图,使用方式和plot方法类似,区别在于前者具有更高的灵活性,可以单独控制每个散点与数据匹配,并让每个散点具有不同的属性。...通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。 ? ?
前面的文章介绍了使用matplotlib绘制柱状图,本篇文章继续介绍使用matplotlib绘制直方图。...hist(): matplotlib中绘制直方图的函数。可以传入很多参数,一般传入两个参数,第一个参数传入用于绘制直方图的数据列表,第二个传入关键字参数bins='组数',表示数据被分成的组数。...在给直方图设置数据标注时,先调用Python基本数据类型列表的count()方法计算出每一个数据的频数,然后使用matplotlib中的text()方法标记到对应的直方图上。...四、matplotlib绘制多张直方图 import matplotlib.pyplot as plt import numpy as np up_kill = [value[0][0][0] for...subplots(): 用于在同一张图像中绘制多张图表,包含柱状图和直方图等。通过nrows, ncols两个参数设置图表的张数和排列方式。
引言 本期推文的主要内容是散点图的绘制教程,所使用的数据关于全球教育水平划分的师生比例,涉及到的包主要为matplotlib和seaborn,当然用于数据处理分析的pandas和 numpy也必不可少...这里所构造的数据详细如下: (1)教育平均值 通过pandas 的mean()方法就可实现全球教育水平的平均值,如下: world_avg = 23.518193030303 (2) 各大地区颜色设置...这里还是采用和之前推文Hans Rosling Charts Matplotlib 绘制等一样的字典颜色赋值,具体如下: order=["Africa", "Oceania","Asia","South...的axes插入方法,绘制大小图或者中国地图十段线部分均可用此方法进行绘制。...总结 Matplotlib对绘制大多数图表还是比较友好的,也是比较容易定制化自己的绘图需求(需熟悉太多的绘图函数 ? ?
本篇文章介绍使用matplotlib绘制雷达图。 雷达图也被称为网络图,蜘蛛图,星图,蜘蛛网图,是一个不规则的多边形。雷达图可以形象地展示相同事物的多维指标,应用场景非常多。...一、matplotlib绘制圆形雷达图 # coding=utf-8 import numpy as np import matplotlib.pyplot as plt results = [{"...在上面的例子中,将两位同学的考试成绩绘制成了雷达图,通过雷达图,可以看出两个人的单科成绩互有高低,而整体来看,两位同学的成绩都很优秀。...二、matplotlib绘制多边形雷达图 import numpy as np import matplotlib.pyplot as plt results = [{"大学英语": 87, "高等数学...ax[i].set_rlim(0, 100) ax[i].set_rlabel_position(0) ax[i].set_title(name[i]) plt.show() 运行结果
继前面使用matplotlib绘制折线图、散点图、柱状图和直方图,本篇文章继续介绍使用matplotlib绘制饼图。...一、matplotlib绘制饼图 # coding=utf-8 import matplotlib.pyplot as plt election_data = {'Biden': 290, 'Trump...: pie(): matplotlib中绘制饼图的函数。...三、matplotlib绘制环形饼图 import matplotlib.pyplot as plt election_data = {'Biden': 290, 'Trump': 214, 'Others...同时,因为环形饼图是通过遮挡实现的,阴影展示不完全,看起来比较别扭,所以不设置shadow参数,去掉阴影。
matplotlib是Python中的一个第三方库。主要用于开发2D图表,以渐进式、交互式的方式实现数据可视化,可以更直观的呈现数据,使数据更具说服力。...图像层指Axes内通过plot、scatter、bar、histogram、pie等函数绘制出的图形。...安装完成后删除~/.matplotlib中的缓存文件,并创建配置文件matplotlibrc,将matplotlibrc中的内容设置为如下内容。...在使用plot()函数绘图时,可以通过c='颜色'来设置折线图的颜色。 scatter(): 绘制散点图。折线图是用直线连接相邻的两个点形成的,但是连成折线后点的显示不明显。...subplots(): 用于在同一张图像中绘制多张图表,通过nrows, ncols两个参数设置图表的张数和排列方式,figsize和dpi同figure()函数。
引言 这篇推文还是python-matplotlib 散点图的绘制过程,涉及到的内容主要包括matplotlib ax.scatter()、hlines()、vlines()、text()、添加小图片和定制化散点图图例样式等...2.2 构建绘图新数据 通过如下代码构建新的特征变量: office['episode_id'] = office.index + 1 office['episode_mod'] = office[...因为本文主要介绍Matplotlib可视化绘制,数据处理也尽可能使用pandas进行数据处理。结果如下: ?...总结 本片绘制推文还是灵活的使用python-matplotlib进行散点图的绘制,主要涉及的绘图技巧为:ax.scatter()、 hlines()、 vlines() 以及散点图例的定制绘制,其目的就是为了熟悉绘图技巧...后期推文会尽可能使用matplotlib绘制。ggplot2的可视化绘制图文后期也会跟上的,希望大家能够喜欢。能力有限,有错误或者不理解的地方可以后台交流或加入 DataCharm交流群进行讨论。
条形图,也称柱状图,看起来像直方图,但完是两码事。条形图根据不同的x值,为每个x指定一个高度y,画一个一定宽度的条形;而直方图是对数据集进行区间划分,为每个区间...
: bar(): matplotlib中绘制柱状图的函数。...柱状图主要用于绘制离散的数据,通过柱状图的高度能够一眼看出各个数据的大小关系,比较数据之间的差别。...上面的柱状图中,绘制的是S10总决赛从8强到决赛的所有比赛中,各位置(包含胜方和负方)的平均击杀数据。通过柱状图,各位置的击杀数大小关系一目了然。...四、matplotlib绘制多张多组柱状图 import matplotlib.pyplot as plt from matplotlib import ticker from numpy import...这就是使用matplotlib绘制柱状图的简单介绍,需要进行更多比较和分析可以做更多尝试。
引言 箱线图(Boxplot) 是一种用作显示一组数据分散情况资料的统计图表,本期推文就如何使用matplotlib和seaborn 绘制出高度定制化的箱线图做出详细的讲解。 02....具体含义可通过如下图表进行说明: ?...(以上图来源于网络,如侵权,望告知,删除) 03. matplotlib绘制 Matplotlib 中绘制箱线图的函数为 boxplot (),但要想进行定制化绘制需求,则需设置较多的绘图参数,boxplot...) 04. seaborn 绘制 相对于matplotlib 大量的绘图属性需要设置,python统计绘图库seaborn绘制箱线图代码量则少很多,但要想绘制不同类别数据箱线图,则需对数据添加类别标签...当然,你还可以通过设置seaborn或matplotlib的主题,绘制不同风格的图表,如下: ? ? 在当类别数据较多时,你也可以将箱线图垂直绘制,如下: ? ? 05.
引言 在绘制学术图表之余,我们也会进行商业图表的绘制,毕竟学术图表的配色有点单调和严谨啊 ? 。今天这篇推文就使用小清新配色对散点图和折线图进行另类的绘制,绘制出让人耳目一新的可视化作品 ? ?...数据可视化 本期推文的可视化绘制技巧相对简单,对其进行合理组合和颜色优化,就能呈现出不一样的效果,因为构造数据比较简单,这里直接给出整个的绘制代码: import pandas as pd import...numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import inset_axes...本期就是使用文本对x轴刻度label进行绘制,颜色设置则使用之前的颜色字典。...总结 Python-matplotlib绘制此类图表的灵活性还是不错的(当然,前提是比较属性各个绘图函数 ? ?
本期还是继续前面的Python-matplotlib 商业图表绘制系列的第5篇教程推文,目的还是为了熟悉matplotlib的绘图语法。...2 数据可视化设计 今天我们是为了仿制一幅可视化作品(如下图),也是看到一位朋友使用R-ggplot2 进行仿制,所以就使用Matplotlib 进行了再现 ? 。...由于下面子图部分绘图技巧较为单一,我们我们今天主要绘制图的上半部分(图中红框部分)。主要涉及的matplotlib绘图技巧如下: ax.plot()绘制自定义化散点图。...ax.scatter()绘制散点。看过我之前教程的小伙伴会发现,我是经常使用此方法进行图表设计。 ax.fill_between()绘制填充。 ax.text()文本添加。...(上述图片来源于朋友的公众号) Python-matplotlib 仿制代码如下: // FileName: plot05.py //@NingHaitao import pandas as pd import
引言 Python-matplotlib商业图表绘制的第二篇教程也已经推出,本期的推文主要涉及到文本、annotate()、散点以及颜色搭配等内容的讲解,话不多说,直接上教程 ? ? 02....year = ax.text(.5,y,text,ha='center', va='center',fontsize = 8,color='black',fontweight='bold') #定制化绘制...right', va='center' 此外,在文本字符串中,我们还设置了换号符号(\n): ' the text can be displayed another\npositionxytext' 最终绘制的效果如如下...总结 本期推文主要涉及的可视化设计技巧不多,但也是定制化绘制中比较常用的方法,希望小伙伴们可以掌握哦,特别是ax.annotate()方法,可以设计出很多“很炫”的可视化作品。
本期还是推出Python-matplotlib "小清新"商业图表的绘制推文,在发现ax.plot()绘图函数的多类别图表功能后,经过不断和点、文本等尝试搭配后,所能构建的图表也就多了起来,下面就直接上教程...具体如下: import pandas as pd import numpy as np import matplotlib.pyplot as plt test_dict = {'x':[0,5,10,15,20,25,30...,zorder=1) #分上下情况绘制点、线混合图形 for x in [0,10,20,30]: #绘制横线上的散点,颜色不同 ax.scatter(x,.5,s=120,color...·),我们的目的是更好的熟悉matplotlib 的那些容易忽略却功能强大的绘图函数,使我们在绘制不同图表时节省时间,更好的完成绘制任务 ? ? ) 03....总结 这一期的推文教程整体不是很难哦,整体上还是对Matplotlib的部分绘图函数进行练习,下期准备写写matplotlib的ax.annotate()的应用,应该也可以 设计出不错的可视化作品吧
引言 本期推文只要介绍学术散点图的绘制教程,涉及的内容主要还是matplotlib散点图的绘制,只不过添加了相关性分析,拟合关系式和颜色映射散点密度(大多数的英文文章中多出现此类图表)。...下面我们就用python-matplotlib 进行此类相关性散点图的绘制教程。 02....可视化绘制01: 可视化的绘制过程还是和之前的教程推文差不多,这里我们主要讲解新的内容,绘制完整代码如下: ?...解释如下: (1)12-18行,使用numpy.linespace()和scipy的optimize.curve_fit()方法绘制拟合公式,并以此绘制散点拟合线和散点对角线; (2)33-35行,...上述结果是更改了matplotlib绘图风格,即在绘图之前添加如下代码: plt.style.use('seaborn-darkgrid') 03.
领取专属 10元无门槛券
手把手带您无忧上云