内容如下 指定列读取 一般情况下,我们使用 read_excel 函数读取 Excel 数据时,都是默认从第 A 列开始读取的,但是对于某些 Excel 数据,往往不是从第 A 列就有数据的,此时我们需要参数...df = pd.read_excel(src_file, header=1, usecols='B:F') 可以看到生成的 DataFrame 中只包含我们需要的数据,特意排除了 notes 列和...date 字段 usecols 可以接受一个 Excel 列的范围,例如 B:F 并仅读取这些列,header 参数需要一个定义标题列的整数,它的索引从0开始,所以我们传入 1,也就是 Excel 中的第...2 行 我们也可以将列定义为数字列表 df = pd.read_excel(src_file, header=1, usecols=[1,2,3,4,5]) 也可以通过列名称来选择所需的列数据 df ...) 这样我们就获取到了干净的表数据了 好了,今天的两个小知识点就分享到这里了,我们下次再见!
内容如下 文末可以获取到该文件 指定列读取 一般情况下,我们使用 read_excel 函数读取 Excel 数据时,都是默认从第 A 列开始读取的,但是对于某些 Excel 数据,往往不是从第...df = pd.read_excel(src_file, header=1, usecols='B:F') 可以看到生成的 DataFrame 中只包含我们需要的数据,特意排除了 notes 列和...date 字段 usecols 可以接受一个 Excel 列的范围,例如 B:F 并仅读取这些列,header 参数需要一个定义标题列的整数,它的索引从0开始,所以我们传入 1,也就是 Excel 中的第...2 行 我们也可以将列定义为数字列表 df = pd.read_excel(src_file, header=1, usecols=[1,2,3,4,5]) 也可以通过列名称来选择所需的列数据 df...) 这样我们就获取到了干净的表数据了 好了,今天的两个小知识点就分享到这里了,我们下次再见!
从 1.6.1 开始,在 sparkR 中 withColumn 方法支持添加一个新列或更换 DataFrame 同名的现有列。...SQL / DataFrame 函数的规范名称现在是小写(例如 sum vs SUM)。 JSON 数据源不会自动加载由其他应用程序(未通过 Spark SQL 插入到数据集的文件)创建的新文件。...PySpark 中 DataFrame 的 withColumn 方法支持添加新的列或替换现有的同名列。...该列将始终在 DateFrame 结果中被加入作为新的列,即使现有的列可能存在相同的名称。...从 1.4 版本开始,DataFrame.withColumn() 支持添加与所有现有列的名称不同的列或替换现有的同名列。
已知我们现有一个.csv格式的Excel表格文件,其中有一列数据,我们希望对其加以区间最大值的计算——即从这一列的数据部分(也就是不包括列名的部分)开始,第1行到第4行之间的最大值、第5行到第8行的最大值...index = False) 在这里,我们定义一个函数calculate_max_every_eight_rows(因为一开始我为了计算8个数据的区间最大值,所有函数名称是eight,大家理解即可...在函数中,我们首先读取文件,将数据保存到df中;接下来,我们从中获取指定列column_name的数据,并创建一个空列表max_values,用于保存每个分组的最大值。...随后,使用range函数生成从0开始,步长为4的索引序列,以便按每4行进行分组;这里大家按照实际的需求加以修改即可。...在每个分组内,我们从column_data中取出这对应的4行数据,并计算该分组内的最大值,将最大值添加到max_values列表中。最后,函数返回保存了每个分组最大值的列表max_values。
当 df1 和 df2 有两个相同的列 (Asset 和 Instrument) 时,单单只对一列 (Asset) 做合并产出的 DataFrame 会有另一列 (Instrument) 重复的名称。...而重塑就是通过改变数据表里面的「行索引」和「列索引」来改变展示形式。...],从行索引转成列索引得到上面的 DataFrame。...因此我们需要做两件事: 只保留 'Date', 'Symbol' 和 ‘Adj Close‘ 从 ‘Date’ 中获取 ‘Year’ 和 ‘Month’ 的信息并插入表中 将处理过后的数据存在 data1...在获取任意信息就用 DataFrame 的索引或切片那一套方法。
最早在R语言数据分析包中提出,表示一种类似表格的数据结构,其中行和列都可以有命名。...2.2 Spark SQL的DataFrame优点 可通过SQL语句、API等多种方式进行查询和操作,还支持内置函数、用户自定义函数等功能 支持优化器和执行引擎,可自动对查询计划进行优化,提高查询效率...Dataset可以从JVM对象构建而成,并通过函数式转换(如map、flatMap、filter等)进行操作。...由于Python是一种动态语言,许多Dataset API的优点已经自然地可用,例如可以通过名称访问行的字段。R语言也有类似的特点。...DataFrame可从各种数据源构建,如: 结构化数据文件 Hive表 外部数据库 现有RDD DataFrame API 在 Scala、Java、Python 和 R 都可用。
:通用函数”中所讨论的,这比通过 Python 循环或推导式执行加法要快得多: %timeit np.fromiter((xi + yi for xi, yi in zip(x, y)), dtype=...用于逐列运算的DataFrame.eval() 就像 Pandas 有顶级的pd.eval()函数一样,DataFrame有eval()方法,它的工作方式类似。...eval()方法的好处是列可以通过名称引用。...DataFrame.eval()中的赋值 除了刚才讨论的选项之外,DataFrame.eval()还允许赋值给任何列。...字符标记变量名而不是列名,并允许你高效计算涉及两个“名称空间”的表达式:列的名称空间和 Python 对象的名称空间。
创建了DataFrame后可以通过index.name属性为DataFrame的索引指定名称。...从CSV中读取数据: df = pd.read_csv('foo.csv') R中的对应函数: df = read.csv('foo.csv') 将DataFrame写入CSV: df.to_csv('...foo.csv') R中的对应函数: df.to.csv('foo.csv') 从Excel中读取数据: xls = ExcelFile('foo.xlsx')xls.parse('sheet1', index_col...数据切片 通过下标选取数据: df['one']df.one 以上两个语句是等效的,都是返回df名称为one列的数据,返回的为一个Series。...DataFrame的每一列,这里使用的是匿名lambda函数,与R中apply函数类似 设置索引 df.set_index('one') 重命名列 df.rename(columns={u'one':'
本文介绍基于Python语言,针对一个文件夹下大量的Excel表格文件,基于其中每一个文件,随机从其中选取一部分数据,并将全部文件中随机获取的数据合并为一个新的Excel表格文件的方法。 ...其中,每一个Excel表格文件都有着如下图所示的数据格式;其中的第1行表示每一列的名称,第1列则表示时间。 ...然后,创建了一个空的DataFrame,用于存储抽样后的数据。 接下来是一个for循环,遍历了原始数据文件夹中的所有.csv文件,如果文件名以.csv结尾,则读取该文件。...然后,使用Pandas中的sample()函数随机抽取了该文件中的10行数据,并使用iloc[]函数删除了10行数据中的第1列(为了防止第1列表示时间的列被选中,因此需要删除)。...最后,使用Pandas中的concat()函数将抽样后的数据添加到结果DataFrame中。
每种方法都将包括说明,可视化,代码以及记住它的技巧。 Pivot 透视表将创建一个新的“透视表”,该透视表将数据中的现有列投影为新表的元素,包括索引,列和值。...我们选择一个ID,一个维度和一个包含值的列/列。包含值的列将转换为两列:一列用于变量(值列的名称),另一列用于值(变量中包含的数字)。 ?...合并不是pandas的功能,而是附加到DataFrame。始终假定合并所在的DataFrame是“左表”,在函数中作为参数调用的DataFrame是“右表”,并带有相应的键。...连接的语法如下: ? 使用联接时,公共键列(类似于 合并中的right_on 和 left_on)必须命名为相同的名称。...尽管可以通过将axis参数设置为1来使用concat进行列式联接,但是使用联接 会更容易。 请注意,concat是pandas函数,而不是DataFrame之一。
ETL 是数据分析中的基础工作,获取非结构化或难以使用的数据,把它变为干净、结构化的数据,比如导出 csv 文件,为后续的分析提供数据基础。...本文对电影数据做 ETL 为例,分享一下 Pandas 的高效使用。完整的代码请在公众号「Python七号」回复「etl」获取。 1、提取数据 这里从电影数据 API 请求数据。...response_list 这样复杂冗长的 JSON 数据,这里使用 from_dict() 从记录中创建 Pandas 的 DataFrame 对象: df = pd.DataFrame.from_dict...的列名称列表,以便从主数据帧中选择所需的列。...,将类型名称附加到 df_columns 中,然后删除 genres 列: df_columns = ['budget', 'id', 'imdb_id', 'original_title', 'release_date
get", params=payload) 此时的 r 是一个 response 对象,我们可以从中获取到相关信息 r.text # 获取响应内容 r.content # 以字节的方式读取响应信息...提取 array 中的元素,可以使用切片的操作,b[1,1]。 使用 shape 属性来获取数组的形状(大小),如 b 数组为一个三行两列的数组。 使用 dtype 属性来获取数组中的数据类型。...ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。...index 选择 DataFrame 中的数据 操作 语法 结果类型 选择某一列 df[col] Series 通过标签选择某一行 df.loc[label] Series 通过标签位置选择某一行 df.iloc...[loc] Series 切片获取某些行 df[5:10] DataFrame 通过布尔向量获取某些行 df[bool_vec] DataFrame 代码 print(df2['Chinese'],
转换作用于单个表(从Python角度来看,表只是一个Pandas 数据框),它通过一个或多个现有的列创建新特征。 例如,如果我们有如下客户表。...我们可以通过查找joined列的月份或是获取income列的自然对数来创建特征。这些都是转换,因为它们仅使用来自一个表的信息。...一个例子是通过client_id对贷款loan表进行分组,并找到每个客户的最大贷款额。 转换:在单个表上对一列或多列执行的操作。一个例子是在一个表中取两个列之间的差异或取一列的绝对值。...实际上,我们已经在之前的函数调用中执行了dfs!深度特征仅仅是堆叠多个基元的特征,而dfs是制作这些特征的过程名称。深度特征的深度是制作特征所需的基元的数量。...聚合就是将深度特征合成依次将特征基元堆叠 ,利用了跨表之间的一对多关系,而转换是应用于单个表中的一个或多个列的函数,从多个表构建新特征。
) # 字典的key就是Series对象中的索引值,字典中的value就是Series对象中的值 print(obj['a']) # 访问到索引值为a的对象的值 2 DataFrame类型 DataFrame...(type(data)) 以上结果需要你注意的是返回值的类型,全部都是DataFrame,也就是说后边我们使用到的DataFrame的方法都适合来处理这些从文件中读取出来的数据。...当然Pandas也提供了一些方法,供我们去观察一下是否有异常值,通常我们会通过查看信息info属性,查看描述方法describe(),或者是通过获取标准差std等方式来观察数据是否存在异常。...参数columns,指的是列索引的数据值,就是Excel中的列字段。 参数aggfunc,指的是数据的统计函数,默认为统计平均值,也可以指定为NumPy模块中的其他统计函数。...参数margins_name,指定行或列的总计名称,默认为All。 现在让我们来试一下统计一下现有表中男人和女人分别的年龄和。首先我们计算出所有人的年龄。
其基本思想是对复杂对象进行“一次性”操作或应用函数,而不是通过循环遍历对象的单个元素。在Python中,函数式编程工具,如map和filter,提供了一些基本的矢量化手段。...④ 这将创建一个二维ndarray对象,其顺序为F(列优先)。 ⑤ 内存被释放(取决于垃圾收集)。 ⑥ 从C对象中获取一些数字。...“GroupBy 操作” DataFrame类的一大优势在于根据单个或多个列对数据进行分组。 “复杂选择” 使用(复杂)条件允许从DataFrame对象中轻松选择数据。...但是,您也可以通过使用DataFrame类的values属性或NumPy的np.array()函数轻松地从DataFrame生成ndarray对象。...② 所有x列的值为正且y列的值为负的行。 ③ 所有列中 x 的值为正或列中 y 的值为负的所有行(这里通过各自的属性访问列)。 比较运算符也可以一次应用于完整的 DataFrame 对象。
02 问题说明 现在工作中面临一个批量化文件处理的问题:就是要把每个二级文件下csv文件合并到一个数据表里,同时要在最终的数据表里增加两列,一列是一级文件目录名称,另一列是二级文件目录名称。...编程之前,我是如何思考的: 1、首先,要读取文件名称,需要引入OS模块下的listdir函数 2、其次,遍历所有一级、二级、三级文件名称,需要用到for循环和循环嵌套 3、然后,读取文件下csv表,需要用到...这个函数的基本机构完成以后,你就可以通过调用该函数来实现你想要的返回结果。...,通常是通过读取文件生成DataFrame,最常用的是read_csv,read_table方法。...其他创建DataFrame的方式也有很多,比如我经常会从SQL SERVER读取数据来生成。这里就不详细介绍。
数据查询 查询过程主要是从DataFrame中提取符合条件的数据块的过程,这一过程与SQL中的SELECT语法功能相似,我们从简到繁的介绍一下: data = pd.DataFrame([['1','2...print(data.iloc[0:1, :]) print(data.loc[0:1, :]) 上面的代码中前两个返回的是Series结构,而后两个返回的是DataFrame结构,另外,有三点需要强调...SQL中的join函数。...,代码的灵活就在于可以用现有的函数,实现新的功能。...,groupby是一个迭代器,我们可以通过遍历的方式获取到groupby之后的内容: data3 = data1.groupby('c')['a'] for group in data3: print
此外还可以通过在引号前加r来表示原始输出: print('C:\some\name') #有换行符的输出 C:\some Ame print(r'C:\some\name') #原始输出 C:\some...当函数的形式参数过多时,一般采用按关键字传递的方式,通过形式参数名=实际参数的方式传递参数,如下所示,函数age有四个参数,可以通过指定名称的方式使用,也可按照顺序进行匹配: def age(a,b,c...若不太清楚如何使用Python 中(含第三方包和库)的方法和对象,可以查阅相关文档或使用帮助功能,代码中获取帮助信息的方式有多种,比如如下几种: ?np.mean ??...DataFrame即是我们常见的二维数据表,包含多个变量(列)和样本(行),通常称为数据框;Series是一个一维结构的序列,会包含指定的索引信息,可以视作是DataFrame中的一列或一行,操作方法与...▲图3-2 jupyter notebook中的DataFrame展现 打印出来的DataFrame包含了索引(index,第一列),列名(column,第一行)及数据内容(values,除第一行和第一列之外的部分
但是由于DataFrame的列包含了字符串(产品名称)和数值(销售数量和单价),我们无法直接进行运算。...= df['Quantity'] * df['Unit Price']上述代码中,我们创建了一个销售数据的DataFrame df,其中包含了产品名称、销售数量和单价。...我们希望通过计算Quantity列和Unit Price列的乘积来得到每个产品的销售总额。但是由于列中包含了不同的数据类型(字符串和数值),导致无法进行运算。...然后,我们可以直接对这两个ndarray进行运算,得到每个产品的销售总额。最后,将运算结果添加到DataFrame中的Sales Total列。...创建ndarray在numpy中,我们可以使用多种方式来创建ndarray对象:通过Python原生列表或元组创建:使用numpy.array()函数可以从一个Python原生列表或元组创建一个ndarray
学习目标 演示如何从现有的数据结构中取子集,合并及创建新数据集。 导出数据表和图以供在R环境以外使用。...从metadata列表的组件中提取celltype列。从celltype值中仅选择最后5个值。 ---- 为列表中的组件命名有助于识别每个列表组件包含的内容,也更容易从列表组件中提取值。...从random列表中提取向量 age的第三个元素。 从random列表中的数据框 metadata中提取基因型信息。 ---- 3.导出文件 到目前为止只修改了R中的数据; 文件保持不变。...有两个必需参数:要导出的数据结构的变量名称,以及要导出到的路径和文件名。...write.table也是常用的导出函数,允许用户指定要使用的分隔符。此函数通常用于创建制表符分隔的文件。 注意:有时在将具有行名称的数据框写入文件时,列名称将从行名称列开始对齐。
领取专属 10元无门槛券
手把手带您无忧上云