(一) 矩阵乘法来理解MapReduce 要求使用计算机计算矩阵相乘(两个矩阵大小超过计算机内存大小) ? 2....因为矩阵相乘是指行*列,故可以把第一个矩阵第一行记作A1和另一个矩阵的第一列记作B1,以下类推.....分别推送到一台服务器上去执行行列乘积,(这就对应于MapReduce中Map)如果这个矩阵的大小为
而这两点,实则是设计一个优秀的,可持续迭代的加速器的基础。本文将从矩阵加速器出发,通过一些简化的模型,给出简单的设计框架。 1....矩阵乘法和硬件模型 一般来说,矩阵乘法加速器中需要加速的计算可表示为 \[ C = A\times B + C \] 其中 (Ain R^{mtimes k}) , (Bin R^{ktimes n}...带宽优化的矩阵乘法加速器设计 和一般的处理器相比,特定的加速器可以设计数量巨大的计算单元(譬如Google TPU V1设计了65536个乘法器);但是DDR的带宽的提升却是有限的。...矩阵乘法加速器的设计目的一般是为了加速大规模的矩阵乘法计算,为了简化分析过程,假设矩阵 (A,B,C) 的大小 (S_A,S_B,S_C) 均远大于 (M) ,即计算过程中每次只能在缓存中存放一部分数据...计算优化的矩阵乘法加速器设计 依据第二节的结果,每次计算的子矩阵为 \[C_{sub}^{p\times q} += A_{sub}^{p\times 1} + B_{sub}^{1\times q}
AIE核和ARM CPU可以使用C/C++编程,而PL可以通过RTL和C/C++代码利用High-Level Synthesis(HLS)进行编程。...以下是该部分内容的总结: 数据流和映射策略: 作者提出了一个矩阵乘法加速器的设计方法,该方法利用了数百个AI Engine (AIE)单元,通过精心规划数据流动和计算资源的分配,实现高效的密集矩阵乘法。...通过上述设计和优化,CHARM旨在解决Versal ACAP架构上密集矩阵乘法加速器的效率和资源分配问题,尤其关注于处理大小不一的矩阵乘法操作,以提高整体系统性能。...论文结果总结 CHARM架构的有效性: CHARM架构成功地解决了大型和小型矩阵乘法操作在Versal ACAP架构上的效率问题,通过设计多样化的加速器,每个加速器针对特定规模的矩阵乘法进行了优化。...资源和带宽优化: 通过资源分配和数据流优化,CHARM能够最大化每个加速器的计算效率,减少计算和带宽的浪费,尤其是对于小型矩阵乘法。
以 CNN 为例,图像数据在经过卷积层时,需要通过矩阵乘法来计算卷积核与图像局部区域的卷积结果,这一过程涉及海量的矩阵元素相乘与累加。...Strassen 算法基于分治思想,通过将大矩阵拆分成小矩阵,并巧妙地组合子矩阵的乘法和加法运算,减少了乘法的计算次数。...通过在 C++代码中实现并合理应用这类高效算法,能让矩阵乘法在大规模数据场景下的运算速度得到质的飞跃。...(三)多线程与并行计算:多核之力协同作战 现代计算机大多配备多核处理器,C++充分利用这一硬件特性进行多线程编程来加速矩阵运算。...例如,随着 GPU 计算能力的日益强大,如何更好地在 C++中利用 GPU 进行矩阵运算加速,通过 CUDA 或 OpenCL 等编程框架实现高效的异构计算,将成为重要的研究方向。
---- 目录 第4章 游戏所需的三维数学 4.1 在二维中解决三维问题 4.2 点和矢量 4.3 矩阵 4.4 四元数 4.5 比较各种旋转表达方式 4.6 其他数学对象 4.7 硬件加速的SIMD运算...(P139 1) 矩阵乘法可以计算点和矢量的缩放、旋转等变换。(P139 last2) 齐次坐标进行位移等计算。...独一无二地表达任意旋转,旋转可通过矩阵乘法直接计算。...英特尔陆续加入多个版本的扩展指令集,称为单指令数据流扩展(streaming SIMD extensions,SSE),其中第一个SSE版本出现于奔腾III处器。...此模式中,4个32位float值被打包进单个128位寄存器,单个指令可对4对浮点数进行并行运算,如加法或乘法。当要计算四元素矢量和4×4矩阵相乘,这个模式正合我们所需!
只不过由于这些算法的卷积矩阵的特殊性,一般不会直接实现它,而是通过一些优化的手段让计算量变小。...但是有些情况下卷积矩阵的元素值无甚规律或者有特殊要求,无法通过常规手段优化,这个时候只能通过原始的方式实现。因此,如何快速的实现图像的任意卷积矩阵操作也有必要做适当的研究。 ...我的优化方法主要包括以下几个方面: 一:使用SSE进行乘法计算,由于SSE可以一次性进行4个单精度浮点数的计算,因此可以有明显的速度提升。 ...那么如果我们也同时获得了需要被卷积的部分数据的话(卷积核肯定和卷积矩阵一样大小,且也应该是16字节对齐的),可以用如下的SSE的代码进行乘法计算: float MultiplySSE(float *Kernel...(扩充后)的元素数量大于16时,我们采用了4路并行的SSE乘法实现,我在I3的CPU上测试时,2路SSE和4路SSE已经没有啥大的区别了,而在I5的CPU上则4路还是有较为明显的提高,因此采用4路SSE
原因: 除了通常的算术和逻辑,现代CPU提供了许多低级指令,称为扩展,例如, SSE2,SSE4,AVX等来自维基百科: 高级矢量扩展(AVX)是英特尔在2008年3月提出的英特尔和AMD微处理器的x86...指令集体系结构的扩展,英特尔首先通过Sandy Bridge处理器在2011年第一季度推出,随后由AMD推出Bulldozer处理器在2011年第三季度.AVX提供了新功能,新指令和新编码方案。...特别是,AVX引入了融合乘法累加(FMA)操作,加速了线性代数计算,即点积,矩阵乘法,卷积等。几乎所有机器学习训练都涉及大量这些操作,因此将会支持AVX和FMA的CPU(最高达300%)更快。...由于tensorflow默认分布是在没有CPU扩展的情况下构建的,例如SSE4.1,SSE4.2,AVX,AVX2,FMA等。
在神经网络模型推理过程中,需要对大量数据进行高效的数学运算,如矩阵乘法、卷积、池化等。...Kernel 层包含了一系列的低级函数,它们直接在硬件上执行数学运算,如卷积、矩阵乘法和激活函数。其通常是硬件特定的,针对不同的 AI 加速芯片有不同的实现。...推理引擎可以利用 Vulkan API 来优化 Kernel 层,特别是在高性能计算和图形处理方面;Tensor Cores:Tensor Cores 是英伟达 GPU 上的一种特殊类型的核心,专门用于加速矩阵乘法和卷积操作...Im2Col/Col2Im:将输入图像和卷积核转换为列向量形式,使用矩阵乘法来实现卷积,可以利用高效矩阵乘法库。...Winograd 算法:通过预计算和转换,减少卷积中的乘法次数,特别适用于小尺寸的卷积核。快速傅里叶变换(FFT):对于大尺寸的卷积核,使用 FFT 将空间域的卷积转换为频域的点乘,提高计算效率。
C++那些事之高性能SIMD 最近在看相关向量化的内容,看起来有点头大,借此机会,学习一下高性能SIMD编程。...但是,许多任务涉及对大量数据执行相同的操作,例如对数组中的所有元素进行加法、乘法或逻辑操作等。SIMD编程通过向CPU提供专门的指令集,使得CPU能够同时对多个数据元素执行相同的操作。...这种处理方式特别适合涉及向量、矩阵、图像、音频和视频等数据的计算。 目前比较常用的有SSE、SSE2、AVX128、AVX256、AVX512。...于是,找到了下面这个表格: Abbreviation Full Name C/C++ Equivalent ps packed single-precision float ph packed half-precision...simd,我们可以实现一些非常有趣的算法,加速对数组,批量数据的处理。
近日,一个优化 AMD CPU 的帖子在 Matlab 社区引起讨论——通过几行代码,将 AMD CPU 加速 250%,进而帖子作者将方法推广到了其他社区,介绍了更普适性的优化方法。...如果 CPU 是 AMD 的,则可以通过系列调整,使得性能有较大的提升。...如果是 AMD CPU,不管 CPU 到底支不支持更高效的 SIMD 扩展,MKL 不支持使用 SSE3-SSE4 或 AVX1/2 扩展,它只能回到 SSE。...还真有开发者直接上手测试,Inori 在 Reddit 上表明,通过实际基准测试,他确认这样做能提升 NumPy 25% 到 90% 的性能。...如下所示,在 AMD 不采用 MKL 的情况下,两个 4096*4096 的矩阵乘法需要 1 秒钟,而加了 MKL 后只需要 0.56 秒。 ?
常用的拟合算法 最小二乘法:这是最常用的拟合算法之一,通过最小化误差的平方和来寻找最佳拟合曲线。最小二乘法可以应用于线性回归、多项式回归等场景。...其基本思想是通过最小化误差的平方和来找到最佳拟合曲线或表面。在不同的数据分布下,最小二乘法的表现可能会有所不同。 最小二乘法在处理正态分布数据时表现最佳。...构建误差平方和(SSE): 计算所有残差的平方和,即总误差:SSE=∑i=1nri2SSE=∑i=1nri2。这个值用于衡量模型与实际数据之间的差异。...计算雅可比矩阵: 计算雅可比矩阵 J(x,θ)J(x,θ),它是一个 n×pn×p 的矩阵,其中 nn 是观测值的数量,pp 是参数的数量。...效果评估 最小化 SSE: 最小化 SSE 是评估模型拟合效果的主要指标。较小的 SSE 表示模型更好地拟合了数据。
在模型的训练过程中,大量的矩阵乘法、加法、卷积等张量操作频繁进行。例如,在深度学习中,神经网络的前向传播是数据通过各层网络时张量的一系列变换与计算,反向传播则是基于损失函数对张量参数的梯度计算与更新。...一个高效的张量计算库能够极大地加速这些计算过程,缩短模型训练时间,提升开发效率。构建通用的 C++ 张量计算库面临着诸多挑战。...比如矩阵乘法,采用分块矩阵乘法算法,将大矩阵分成多个小矩阵块进行计算,这样可以提高缓存命中率,减少内存访问次数。...对于卷积操作,可以利用快速傅里叶变换(FFT)等算法进行加速,将时域的卷积转换为频域的乘法,从而降低计算复杂度。内存管理也是构建高效张量计算库不可忽视的环节。...对于 GPU 加速,虽然本文主要聚焦于 C++ 本身的构建,但也可以设计相应的接口和数据传输机制,以便在需要时能够方便地将张量计算任务转移到 GPU 上进行加速,利用 GPU 强大的浮点计算能力来处理大规模的张量运算
其中,BLAS(Basic Linear Algebra Subprograms)和 LAPACK(Linear Algebra PACKage)这两个强大的库,成为 C++开发者优化线性代数运算、加速人工智能算法的得力助手...在图像识别任务里,图像被转化为矩阵形式输入神经网络,通过卷积层的卷积核(也是矩阵)进行滑动卷积计算,这一过程中矩阵乘法频繁出现。...二、BLAS 和 LAPACK 库:C++线性代数运算的强大后盾BLAS 库专注于基础的线性代数运算,如向量与向量、向量与矩阵、矩阵与矩阵之间的乘法等运算,它提供了高度优化的底层实现。...通过简单地替换原本的基础运算代码为 BLAS 库函数调用,就可以让这些频繁出现的基础运算在执行效率上得到大幅提升,从而加速整个神经网络的前向传播过程,减少模型推理所需的时间。...四、总结与展望在 C++中借助 BLAS 和 LAPACK 库优化基础线性代数运算对于加速人工智能算法具有不可忽视的重要性。
Level 2 BLAS 函数 这些函数主要用于矩阵-向量操作: cublasSgemv: 一般矩阵-向量乘法。 cublasStrmv: 三角矩阵-向量乘法。...例如,Sgemm 对应于单精度浮点数的矩阵乘法,而 Dgemm 则对应于双精度浮点数的矩阵乘法。...稀疏矩阵-矩阵乘法 (SpMM): 这种操作涉及到两个稀疏矩阵或者一个稀疏矩阵和一个稠密矩阵之间的乘法。...它通过提供预先优化的内核来加速深度学习应用,从而让开发者无需深入了解底层硬件细节就能获得高性能的模型训练和推理速度。...Thrust Thrust 是一个用于 CUDA 和其他并行计算平台的 C++ 并行执行库,它设计得非常类似于 C++ 标准模板库(STL)。
在水平融合中,AITemplate 目前可以把不同输入形状的矩阵乘法 (GEMM)、矩阵乘法和激活函数,以及 LayerNorm、LayerNorm 和激活函数进行融合。...在纵向融合中,AITemplate 支持超过传统标准的 Elementwise 融合,包括: 通过 CUTLASS 和 Composable Kernel 支持了矩阵和 Elementwise 算子融合...; 为 Transformer 的 Multi-head Attention 提供了矩阵乘法和内存布局转置融合; 通过张量访问器对内存操作,如 split、slice、concatenate 等进行融合来消除内存搬运...head attention 模块,目前 AITemplate 在 CUDA 平台使用了 Flash Attention,在 AMD 平台上使用了 Composable Kernel 提供的通用背靠背矩阵乘法融合...AITemplate 在 Python 中找到性能最优的 GPU 模板参数,再通过 Jinja2 渲染出最终的 C++ 代码。
图 47矩阵乘法运算函数如下:图 48matrix_demo_test.cpp 中提供了矩阵乘法运算函数 mmult_sw(),程序将 mmult_sw()的运算结果和顶层函数 standalone_mmult...图 56图 57可看到矩阵乘法运算函数里的三个 for 循环均为顺序运行, 因此耗时最长。...打开solution2 的Analysis, 可看到矩阵乘法运算函数里的 L1/L2 for 循环并行执行,因此耗时较短。...图 644.4.1 PL 端 IP 核测试 Vivado 工程说明浮点矩阵乘法运算加速器 IP 核通过 AXI DMA IP 核连接到 PS 端 ACP 接口,从而连通到 PS 端 L2 缓存。...AXI Timer IP 核用于计数,可通过其寄存器来计算浮点矩阵乘法运算加速器 IP 核的运算时间。
从神经网络中的矩阵乘法、向量运算,到数据处理中的特征分解、奇异值分解等,无一不依赖高效且精准的线性代数计算。而 C++作为一种强大且高效的编程语言,在人工智能开发中有着独特的地位。...例如,创建一个矩阵、进行矩阵乘法、计算矩阵的逆等操作,都可以通过简单且符合数学逻辑的函数调用来完成,大大降低了开发的难度和复杂性。...在前向传播中,大量的矩阵乘法用于计算每层的输出。利用 Armadillo 库,可以简洁地实现这些矩阵乘法运算,并且无需担心底层的内存管理和循环优化等问题。...在模型训练过程中,可以利用这些优化特性,加速算法的收敛速度,减少训练时间。...例如,在深度学习训练中,通过 Armadillo 库高效的矩阵运算和多线程支持,可以在相同的硬件条件下,更快地完成一轮训练迭代,从而在更短的时间内得到性能良好的模型。
Im2Col 操作的目的是将卷积运算转换为矩阵乘法,这样做有几个显著的好处。首先,它允许利用已有的高效矩阵乘法算法(如 GEMM,General Matrix Multiply)来加速卷积计算。...通过 Im2Col,输入数据被重排成一个大矩阵,而卷积权重(即卷积核)也被转换为另一个矩阵。这样,原本的卷积运算就转化为了这两个矩阵的乘法操作,如图上所示。...通过将矩阵乘法的输入限定为 FP16 精度,可以大幅减少所需的计算资源和内存带宽,从而加速计算。同时,通过允许累加矩阵 C 和输出矩阵 D 使用 FP32 精度,可以保证运算结果的准确性和数值稳定性。...CUDA 通过CUDA C++ WMMA API向外提供了 Tensor Core 在 Warp 级别上的计算操作支持。...这些 C++接口提供了专门用于矩阵加载、矩阵乘法和累加、以及矩阵存储等操作的功能。例如上图所示代码中,其中的 mma_sync 就是执行具体计算的 API 接口。
领取专属 10元无门槛券
手把手带您无忧上云