展开

关键词

一文读懂遗传算法工作原理(附Python实现)

结果我果然找到了一个,它叫遗传算法。在把它应用到超市销售问题之后,最终我的分数在排行榜上一下跃居前列。 ? 没错,仅靠遗传算法我就从 219 名直接跳到 15 名,厉害吧! 目录 1、遗传算法理论的由来 2、生物学的启发 3、遗传算法定义 4、遗传算法具体步骤 初始化 适应度函数 选择 交叉 变异 5、遗传算法的应用 特征选取 使用 TPOT 库实现 6、实际应用 7、结语 你也许在想:这句话和遗传算法有什么关系?其实遗传算法的整个概念就基于这句话。 遗传算法在这里可以进行优化并给出一个很好的结果。 解决这个问题也要用到遗传算法。 ? ? 6.3 机器人 遗传算法在机器人领域中的应用非常广泛。

1.5K40

遗传算法

A: 交叉概率,即每个个体 是否进行交叉 的概率 变异概率,即 每个个体 是否进行变异的概率, 每个个体都要应用此概率,概率命中 则 执行操作 概率为 事先自己设定 补充 遗传算法的每个操作对不同的应用选择的策略各有优劣 遗传算法 遗传算法详解 附python代码实现 https://blog.csdn.net/u013719780/article/details/78724971 https://blog.csdn.net /qq_40130759/article/details/79535575 遗传算法的交叉变异详解 本文作者: yiyun 本文链接: https://moeci.com/posts/Genetic-Algorithm

10920
  • 广告
    关闭

    腾讯云+社区系列公开课上线啦!

    Vite学习指南,基于腾讯云Webify部署项目。

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    遗传算法可视化项目(4):遗传算法

    昨天讲了一下关于距离的计算,没有看昨天或者之前的文章,点一下历史消息或者这里: 遗传算法可视化项目(1):概述 遗传算法可视化项目(2):获取信息 遗传算法可视化项目(3):创建图的数据结构 遗传算法可视化项目 (插曲):关于距离的计算 今天首先介绍遗传算法(genetic algorithm,GA)。 遗传算法是一种进化算法,其基本原理是模仿自然界中的生物“物竞天择,适者生存”的进化法则,把问题参数编码为染色体,再利用迭代的方式进行选择、交叉、变异等运算法则来交换种群中染色体的信息,最终生成符合优化目标的染色体 标准遗传算法的步骤如下: (1)编码:遗传算法在搜索解空间之前需要将解数据表示成遗传空间的基因型串结构数据,这些串结构数据的不同组合构成了不同的染色体。 (2)初始化:即生成初始种群。 遗传算法通过选择过程体现这一思想,进行选择的原则是适应性强的个体为下一代贡献一个或者多个后代的概率大。这体现了达尔文的适者生存原则。 (5)交叉:交叉操作是遗传算法中最主要的遗传操作。

    65940

    一文读懂遗传算法工作原理(附Python实现)

    结果我果然找到了一个,它叫遗传算法。在把它应用到超市销售问题之后,最终我的分数在排行榜上一下跃居前列。 ? 没错,仅靠遗传算法我就从 219 名直接跳到 15 名,厉害吧! 目录 1、遗传算法理论的由来 2、生物学的启发 3、遗传算法定义 4、遗传算法具体步骤 初始化 适应度函数 选择 交叉 变异 5、遗传算法的应用 特征选取 使用 TPOT 库实现 6、实际应用 你也许在想:这句话和遗传算法有什么关系?其实遗传算法的整个概念就基于这句话。 遗传算法在这里可以进行优化并给出一个很好的结果。 解决这个问题也要用到遗传算法。 ? ? 6.3 机器人 遗传算法在机器人领域中的应用非常广泛。

    57050

    遗传算法入门

    “参考自:基于NSGA-Ⅱ的多目标配电网重构 遗传算法历史 遗传算法(GA)是从生物进化的角度考虑提出来的方法,19世纪达尔文在大量观察基础上总结了大自然进化规律,即优胜劣汰:后来孟德尔通过豌豆实验发现了遗传规律 由于遗传算法适应能力较强,同时具备较强的全局搜索能力,使遗传算法在各个领域都得到了广泛的应用,同时也促使遗传算法在理论上得到了很大的发展 运用遗传算法求解实际问题时, 我们需要将目标问题同遗传算法建立联系 遗传交叉操作方式的选取对遗传算法效率影响较大,具体采用何种交叉方式取决于实际问题情况,总之无论采取哪种交叉方式,都需要 保证种群基因多样性,不然容易使遗传算法陷入早熟。 遗传编码、选择、交叉和变异组成了遗传算法的基本框架 ,即遗传算法的标准组成部分,其操作过程都是采用随机操作,有一定能力 跳出局部最优 ,具有较好的 全局搜索能力 。 通过对遗传算法的编码形式的分析,可以得出遗传算法在面对 非线性、不连续、离散型 问题时,具有较强的处理能力,在解决实际问题中具有较强的适应能力。

    47440

    简述遗传算法

    思想 达尔文自然选择学说和孟德尔遗传机理的生物进化过程的计算模型,个体经过每一代的迭代不断产生更优良的基因序列(可行解),淘汰掉适应度值低的个体,从而不断接近最优的适应度(目标函数),一般来说遗传算法是启发性算法 步骤 遗传算法由编解码,个体适应度评估和遗传运算三大模块组成 可行解的编码 (取决于决策变量的定义域区间) 一般采用二进制编码,设某一个参数x的取值范围为(L,U),假设用长度为k的二进制编码表示该参数 所以如果是最小值问题,需要取负数求最大 种群中初始个体的确定 初始个体即为寻找最优解的初始可行解,此时算出的适应度函数值不一定是最优的,初始种群大小为超参数,根据问题的规模来确定,且种群大小不随着迭代次数增加而变化,遗传算法本质上是不断把优质基因加入到后代当中去 突变等几步,直到最大适应度值不发生变化或者变化的差值在给定的阈值时则停止迭代,最终取得最大适应度的个体即为最优个体,解码后即为可行解 自变量在给定的约束条件下进行了无缝编码(能覆盖所有可能的解),所以遗传算法总是有机会得到全局最优而不是局部最优

    20420

    遗传算法(二)

    本文作者:南海一号 在上一节中我给大家讲解了如何安装遗传算法工具箱,并给出了代码,今天我就给大家讲解一下如何使用工具箱,并且讲解一下遗传算法的使用。还是按照上次的代码。 如果有同学还没有上一次的代码,或者不会安装遗传算法工具箱。请回到上一节 遗传算法工具箱安装(一) 简单介绍一下遗传算法原理遗传算法用到的是生物进化的原理。物竞天者,适者生存。 本来这道题可以用求导的方法求解出来,但我们以此为例题,讲解一下遗传算法。 %% 定义遗传算法参数 NIND=40; %个体数目 MAXGEN=20; %最大遗传代数 PRECI=20; %变量的二进制位数 GGAP=0.95; % lb;ub;1;0;1;1]; %区域描述器 Chrom=crtbp(NIND,PRECI); %初始种群 这一步定义遗传算法的一些参数

    43540

    遗传算法系列之一:遗传算法简介

    因此开始写遗传算法系列,这篇博客作为开端介绍遗传算法的基本知识。遗传算法的数学基础和变种将在后面介绍。 遗传算法 ( GA, Genetic Algorithm ) ,也称进化算法 。 遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。为了介绍遗传算法,我们先介绍一些基本概念。 1. 历史上适应度最高个体所包含的解,作为遗传算法的输出。下图是遗传算法的流程图。 image.png 根据上面的流程图,遗传算法包含三个基本操作:选择、交叉和变异。 遗传算法交叉比人体内染色体交叉要简单许多。遗传算法的染色体是单倍体,而人体内的真正的染色体是双倍体。下图是遗传算法中两条染色体在中间进行交叉的示意图。 实际上,应用遗传算法的主要工作是设计编码方案、交叉过程、变异过程和选择过程。我们将在后续博客中介绍不同问题的遗传算法

    90191

    遗传算法简述

    遗传算法(Genetic Algorithm)又叫基因进化算法,或进化算法。属于启发式搜索算法一种,这个算法比较有趣,并且弄明白后很简单,写个100-200行代码就可以实现。在某些场合下简单有效。 上面列出的几个问题都可以通过遗传算法去解决。本文列举的问题是TSP(Traveling Salesman Problem)类的问题。 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法很简单,没有什么分支判断,只有两个大循环,流程大概如下 流程中有几个关键元素: ? 1、 适度值评估函数。 结尾:遗传算法除了上述这些几个主要算子之外,还有一些细节。如交叉概率pc,变异概率pm,这些虽然都是辅助手段,但是有时候对整个算法结果和性能带来截然不同的效果。这也是启发式算法的一个缺点。

    88580

    遗传算法(2)

    遗传算法中我们再举一个求极大值的例子。这种例子也是比较多见的,只要我们把一些数据关系描述成函数之后就会有一些求极大值或者极小值的问题。 没学过微积分的朋友也先别着急,我们今天介绍的不是这种微积分领域常用的办法,还是考虑用遗传算法的思路来做。在刚刚这个山峦叠嶂的小小区域,我们再冒充一把上帝。 根据实数稠密性原理,在之间是有无穷多个实数的,我们没有办法用类似背包问题中的基因编码的办法穷举所有的实数可能性。 这一类的问题可能我们以后在写遗传算法中也同样会遇到,请大家注意。怎么破呢,我觉得可以考虑以下两个方法。

    665120

    遗传算法系列之四:遗传算法的变种

    这篇博客介绍遗传算法变种。我们认为,遗传算法的变种可以分为两个类别:有效性变种和应用性变种。有效性变种用于提高遗传算法的性能。 应用性变种是遗传算法适用于不同问题形成的,用于扩展遗传算法的应用范围。 有效性变种 有效性变种是人们“变化”了的典型遗传算法,主要用于提高遗传算法各方面的性能。 受此启发,人们提出了多种群遗传算法。顾名思义,多种群遗传算法就是保持多个种群同时进化,具体流程如下图所示。多种群遗传算法遗传算法执行多次的区别在于移民,种群之间会通过移民的方式交换基因。 受此启发,人们提出了混合遗传算法,将遗传算法和这些算法结合起来。混合遗传算法的框架是遗传算法的,只是生成新一代种群之后,对每个个体使用局部搜索算法寻找个体周围的局部最优点。 应用性变种 应用性变种是遗传算法适用于不同问题形成的,用于扩展遗传算法的应用范围。

    2.1K100

    优化算法——遗传算法

    遗传算法的第一次接触 遗传算法是我进入研究生阶段接触的第一个智能算法,从刚开始接触,到后来具体去研究,再到后来利用遗传算法完成了水利水电的程序设计比赛,整个过程中对遗传算法有了更深刻的理解,在此基础上 遗传算法的基本流程 遗传算法的过程中主要包括这样几个要素:1、参数的编码。2、初始群体的设定。3、适应度函数的设计。4、遗传操作设计。5、控制参数的设定。 基本遗传算法的具体过程如下: ? 遗传算法过程中的具体操作 参数的编码 遗传算法中的参数编码的方式主要有:1、二进制编码。2、Gray编码。3、实数编码。4、有序编码。 ---- 在实现遗传算法时,一个常用的方法是将到当前代为止演化的最好个体单独存放起来,在遗传算法结束后,将演化过程中发现的最好个体作为问题的最优解或近似最优解。 我在这里简单介绍了遗传算法遗传算法是一个研究较多的算法,还有利用遗传算法求解组合优化问题,带约束的优化问题,还有一些遗传算法的理论知识,如模式定理,积木块假设,在这里就不一一列举了,希望我的博文对你的学习有帮助

    3.1K60

    遗传算法系列之二:“欺骗”深度学习的遗传算法

    这篇博客主要介绍不同问题的遗传算法遗传算法是通用的全局优化算法,因此有很多的应用。有很多应用我是看不懂的,比如机器人步态优化。 遗传算法便是产生这样混乱图片的方法之一。论文中使用了不同的编码方式,我们介绍在MNIST数据集上的简单编码方式。 某些蛋疼的例子 当然不是所有问题都适合使用遗传算法的。比如很多年前,石三石跟我介绍了一篇国内论文,那篇论文用遗传算法优化k-means聚类的k值。 我虽然不知道k-means聚类算法k值的选择有什么办法,但我知道遗传算法是绝对不行的。因为我把k值从1到n(n为待聚类的样本数量)全部试一遍的时间,时间和遗传算法的运行时间差不多吧。 有些神经网络需要一天时间训练,如果遗传算法初始种群有100个个体,光是计算这个一百个个体的适应度就需要100天。遗传算法调参显然是不实用的。

    1.3K90

    遗传算法(1)

    与其说遗传算法是一个算法,不如说是一种处理问题的思想方式更为恰当,因为遗传算法整个体系说来说去都是在说对于一种问题处理的思路和原则,而不是一个具体的代码编写过程。 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。 在这个体系里,思维方式远比编写代码重要,所以我们先用一点时间来缅怀一下遗传算法真正的鼻祖,著名的英国生物学家查尔斯·罗伯特·达尔文——进化论的奠基人。 遗传算法在解决很多领域的问题时都体现出很好的特性,例如: TSP问题(Traveling Salesman Problem即旅行商问题也叫货郎担问题)、九宫问题(八数码问题)、生产调度问题(Job Shop 这种情况下,遗传算法就显示出优势来了。我们看看在6个物品的情况里怎么来求解。 Step 1. 基因编码 一共6种物品,每种物品的有无都可以作为独立的一个基因片段: ? 一共是6位。

    1.3K80

    遗传算法实例

    51650

    优化算法——遗传算法

    遗传算法的第一次接触 遗传算法是我进入研究生阶段接触的第一个智能算法,从刚开始接触,到后来具体去研究,再到后来利用遗传算法完成了水利水电的程序设计比赛,整个过程中对遗传算法有了更深刻的理解,在此基础上 遗传算法的基本流程 遗传算法的过程中主要包括这样几个要素:1、参数的编码。2、初始群体的设定。3、适应度函数的设计。4、遗传操作设计。5、控制参数的设定。 基本遗传算法的具体过程如下: ? 遗传算法过程中的具体操作 参数的编码 遗传算法中的参数编码的方式主要有:1、二进制编码。2、Gray编码。3、实数编码。4、有序编码。 ---- 在实现遗传算法时,一个常用的方法是将到当前代为止演化的最好个体单独存放起来,在遗传算法结束后,将演化过程中发现的最好个体作为问题的最优解或近似最优解。 我在这里简单介绍了遗传算法遗传算法是一个研究较多的算法,还有利用遗传算法求解组合优化问题,带约束的优化问题,还有一些遗传算法的理论知识,如模式定理,积木块假设,在这里就不一一列举了,希望我的博文对你的学习有帮助

    66220

    优化设计——遗传算法

    不知道你是不是 看了一大堆遗传算法 相关教材、网上简介、程序源码 十分清楚程序的编写过程 然而针对实际问题进行优化分析时候 不知道该从何开始,感到茫然无措! 本推文主要是介绍如何把遗传算法应用到实际问题中,具体示例如下: 1 优化设计过程 针对具体问题进行优化分析时,不仅需要对相应的优化算法具有一定的了解,还需要采用数学的方法对具体的工程问题进行描述, 2 遗传算法 完成数学模型构建后,需要对模型进行优化分析,本节介绍遗传算法在具体工程问题中的应用,基本过程如图所示: 3 MATLAB实现过程 说了那么多,不如具体工程实例来的实在,MATLAB具体实现过程如下 2; 2 1]; b = [2; 2; 3]; lb = zeros(2,1); [x,fval,exitflag] = ga(@lincontest6, 2,A,b,[],[],lb) 自己编写遗传算法

    10710

    遗传算法selection总结-

    该方法也叫 Roulette Wheel Selection(轮盘赌博选择),种群中的个体被选中的概率与个体相应的适应度函数的值成正比。

    2.4K20

    遗传算法求解函数

    问题: 用遗传算法求解函数f(x) = x + 10sin(5x) + 7cos(4x) 在区间[0,9]的最大值。 这个函数的图形为: ? 现在,用遗传算法找到这个点。选择使用Python语言。 基本概念:基因、染色体和种群 一系列个体组成的集合叫种群。每一个个体就是问题的一个解。 个体的特征,是由一系列参数(Gene)决定的。 基因交叉与繁殖 基因交叉是遗传算法里重要的一环。方法是:在染色体上随机选一个交叉点。子代个体的染色体,左边片段来自父亲对应的基因片段,右边片段来自母亲对应的基因片段。

    56750

    相关产品

    • 手游安全

      手游安全

      手游安全( MTP)是由腾讯云移动安全团队联合腾讯游戏安全团队提供的专业手游安全解决方案。具备 24 小时安全保障能力,支持全方位多维度的防护与检测,仅需客户端 2-3 个接口调用即可完成接入,帮助手游厂商快速应对手游作弊、手游篡改破解等等常见游戏安全问题……

    相关资讯

    热门标签

    扫码关注云+社区

    领取腾讯云代金券