Dask的核心组件与语法 Dask由几个核心组件组成,包括动态任务调度系统、Dask数组(dask.array)、Dask数据框(dask.dataframe)和Dask Bag(dask.bag)。...你可以使用以下命令进行安装: pip install dask[complete] Dask DataFrame Dask DataFrame与Pandas DataFrame类似,但支持更大的数据集。...你可以从CSV文件、Parquet文件等多种格式加载数据,并执行Pandas中的大多数操作。...import dask.dataframe as dd # 从CSV文件加载数据 df = dd.read_csv('large_dataset.csv') # 显示数据的前几行 print(df.head...mean_value:计算并输出某一列的均值。 result:按列分组后的均值结果。 Dask Array Dask Array允许你处理大于内存的数组,适用于需要处理大规模Numpy数组的情况。
但是即使对于经验丰富的研究人员来说,从大量的研究论文中找出想读的内容也是非常不容易的。...Dask Bag:使我们可以将JSON文件加载到固定大小的块中,并在每行数据上运行一些预处理功能 DASK DATAFRAME:将DASK Bag转换为DASK DATAFRAME,并可以用类似Pandas...由于Dask支持方法链,因此我们可以仅保留一些必需的列,然后删除不需要的列。...Bag转换为DASK DATAFRAME 数据加载的最后一步是将Dask Bag转换为DASK DATAFRAME,这样我们可以使用类似Pandas的API进行访问。...只需要一行代码就可以下载预训练的模型,我们还编写了一个简单的辅助函数,将Dask dataframe分区的整个文本列转换为嵌入。
Dask 与 Python 库(如 NumPy 数组、Pandas DataFrame 和 scikit-learn)集成,无需学习新的库或语言,即可跨多个核心、处理器和计算机实现并行执行。...Dask 由两部分组成: 用于并行列表、数组和 DataFrame 的 API 集合,可原生扩展 Numpy 、NumPy 、Pandas 和 scikit-learn ,以在大于内存环境或分布式环境中运行...Dask 包含三个并行集合,即 DataFrame 、Bag 和数组,每个均可自动使用在 RAM 和磁盘之间分区的数据,以及根据资源可用性分布在集群中多个节点之间的数据。...对于可并行但不适合 Dask 数组或 DataFrame 等高级抽象的问题,有一个“延迟”函数使用 Python 装饰器修改函数,以便它们延迟运行。...| Dask + NVIDIA:推动可访问的加速分析 NVIDIA 了解 GPU 为数据分析提供的强大性能。因此,NVIDIA 致力于帮助数据科学、机器学习和人工智能从业者从数据中获得更大价值。
出于实验目的,我在 Python 中生成了一个随机数据集,其中包含可变行和三十列——包括字符串、浮点数和整数数据类型。 2....CSV 的行数从 100k 到 500 万不等。 描绘 Pandas、DataTable 和 Dask 读取 CSV 所需时间的折线图 1....实验结果表明,当行数少于一百万时,Dask 和 Pandas 从 CSV 生成 Pandas DataFrame 的时间大致相同。 2....实验 2:保存到 CSV 所需的时间 下图描述了 Pandas、Dask 和 DataTable 从给定的 Pandas DataFrame 生成 CSV 文件所花费的时间(以秒为单位)。...行数范围从 100k 到 500 万。 折线图描绘了 Pandas、DataTable 和 Dask 将 DataFrame 存储到 CSV 所需的时间 1.
Dask提供了两种主要的数据结构:Dask.array和Dask.dataframe。在本文中,我们将重点介绍Dask.array,它是Dask中用于处理多维数组数据的部分。...默认情况下,Dask.array会自动选择分块大小,但有时候我们可能希望手动调整分块大小以获得更好的性能。...例如,假设我们有一个较大的数组,我们希望将其分成100行和100列的小块: import dask.array as da # 创建一个较大的Dask数组 arr = da.random.random..., ..., 100)) 可以看到,数组被成功地分成了100行和100列的小块。...,并将其拆分成了1000行和1000列的小块。
Dask 简介与优势 Dask 是一个灵活并且易于使用的 并行计算库,可以在小规模计算机上进行大规模数据处理。它的核心组件包括: Dask Arrays:与 NumPy 类似,但支持计算超大数组。...Dask 的主要优势: 轻松扩展: 支持从单台机器到分布式集群的无缝扩展。 简单使用: Dask 可以直接替代 pandas 和 NumPy 的常用 API,几乎无需改动代码。...以下是常见场景下 Dask 的用法: 3.1 使用 Dask DataFrame 替代 pandas 当数据集过大时,Dask DataFrame 能够自动分区并并行处理数据,非常方便。...3.2 使用 Dask Array 替代 NumPy Dask Arrays 提供了类似于 NumPy 的操作界面,但能够处理远超内存容量的超大数组。...总结与表格概览 功能 Dask 替代方案 主要优势 Dask DataFrame pandas 处理无法装载到内存的大型数据集 Dask Array NumPy 处理超大数组并行计算 Dask Delayed
官方:https://dask.org/ Dask支持Pandas的DataFrame和NumpyArray的数据结构,并且既可在本地计算机上运行,也可以扩展到在集群上运行。...3、Dask安装 可以使用 conda 或者 pip,或从源代码安装dask 。...Numpy、pandas Dask引入了3个并行集合,它们可以存储大于RAM的数据,这些集合有DataFrame、Bags、Arrays。...Dask的使用是非常清晰的,如果你使用NumPy数组,就从Dask数组开始,如果你使用Pandas DataFrame,就从Dask DataFrame开始,依此类推。...有时问题用已有的dask.array或dask.dataframe可能都不适合,在这些情况下,我们可以使用更简单的dask.delayed界面并行化自定义算法。例如下面这个例子。
Pandas 有两个竞争对手,一个是 Dask[1] 另一个是 DataTable[2],不过 Pandas 太牛逼了,其他两个库都提供了与 Pandas 的 DataFrame 相互转换的方法。...它们都可以用来读写 Excel 有网友对此做了读写性能测试[3],先生成随机数据集,其中包含可变行和三十列——包括字符串、浮点数和整数数据类型。每个测试重复了五次,取其平均值。...CSV 的行数从 10 万到 500 万不等。...下面是测试结果: 读取 csv 当行数少于一百万时,Dask 和 Pandas 从 CSV 生成 Pandas DataFrame 的时间大致相同。...但是,当我们超过一百万行时,Dask 的性能会变差,生成 Pandas DataFrame 所花费的时间要比 Pandas 本身多得多。
然后,将其转换为 Dask-GeoPandas DataFrame: python import dask_geopandas 将 GeoPandas DataFrame 分区为 Dask-GeoPandas...DataFrame,这里分为4个部分 ddf = dask_geopandas.from_geopandas(df, npartitions=4) 默认情况下,这会根据行来简单地重新分区数据。...python import dask.dataframe as dd import dask_geopandas 从 CSV 文件读取数据 ddf = dd.read_csv('...') # 使用你的文件路径替换...例如,在合并或连接操作之前,仔细考虑是否所有列都需要参与操作。 使用更高效的空间连接 在使用dask_geopandas进行空间连接时,确保操作是高效的。...import delayed, compute # 从dask中导入compute函数 input_shapefile = '/home/mw/input/dask6250/201105.shp'
category').cat.codes # One-Hot Encoding df_onehot = pd.get_dummies(df, columns=['City']) 1.4 新特征生成 从现有特征中生成新特征可以提升模型的表现...中的特定列进行自定义计算并生成新的列。...首先需要安装 Dask: pip install dask 然后使用 Dask 读取大型数据集,并以 DataFrame 的形式处理数据。...import dask.dataframe as dd # 使用 Dask 读取大型 CSV 文件 df_dask = dd.read_csv('large_file.csv') # 像操作 Pandas...向量化意味着对整个数组进行操作,而不是对每个元素进行逐个处理,这样能极大提高运算速度。
因此,我们将创建一个有6列的虚拟数据集。第一列是一个时间戳——以一秒的间隔采样的整个年份,其他5列是随机整数值。 为了让事情更复杂,我们将创建20个文件,从2000年到2020年,每年一个。...下面是创建CSV文件的代码片段: import numpy as np import pandas as pd import dask.dataframe as dd from datetime..., day=1), end=datetime(year=year, month=12, day=31), freq=’S’ ) df = pd.DataFrame...处理单个CSV文件 目标:读取一个单独的CSV文件,分组的值按月,并计算每个列的总和。 用Pandas加载单个CSV文件再简单不过了。...结论 今天,您学习了如何从Pandas切换到Dask,以及当数据集变大时为什么应该这样做。Dask的API与Pandas是99%相同的,所以你应该不会有任何切换困难。
目前,转置功能相对粗糙,也不是特别快,但是我们可以实现一些简单优化来获得更好的性能。...尽管这些数字令人印象深刻,但是 Pandas on Ray 的很多实现将工作从主线程转移到更异步的线程。文件是并行读取的,运行时间的很多改进可以通过异步构建 DataFrame 组件来解释。...在 Dask 上进行实验 DataFrame 库 Dask 提供可在其并行处理框架上运行的分布式 DataFrame,Dask 还实现了 Pandas API 的一个子集。...我什么时候应该调用 .persist() 将 DataFrame 保存在内存中? 这个调用在 Dask 的分布式数据帧中是不是有效的? 我什么时候应该重新分割数据帧?...MAX 案例研究 为了查看逐行操作和逐列操作时三者的对比结果,我们继续在相同的环境中进行实验。 ?
测试内容 这两个脚本主要功能包括: 从两个parquet 文件中提取数据,对于小型数据集,变量path1将为“yellow_tripdata/ yellow_tripdata_2014-01”,对于中等大小的数据集...yellow_tripdata*.parquet”; 进行数据转换:a)连接两个DF,b)根据PULocationID计算行程距离的平均值,c)只选择某些条件的行,d)将步骤b的值四舍五入为2位小数,e)将列“...trip_distance”重命名为“mean_trip_distance”,f)对列“mean_trip_distance”进行排序 将最终的结果保存到新的文件 脚本 1、Polars 数据加载读取...函数功能与上面一样,所以我们把代码整合在一起: import dask.dataframe as dd from dask.distributed import Client import time...Polars Dask 总结 从结果中可以看出,Polars和Dask都可以使用惰性求值。
这两个库使用场景有些不同,Numpy擅长于数值计算,因为它基于数组来运算的,数组在内存中的布局非常紧凑,所以计算能力强。但Numpy不适合做数据处理和探索,缺少一些现成的数据处理函数。...PySpark提供了类似Pandas DataFrame的数据格式,你可以使用toPandas() 的方法,将 PySpark DataFrame 转换为 pandas DataFrame,但需要注意的是...相反,你也可以使用 createDataFrame() 方法从 pandas DataFrame 创建一个 PySpark DataFrame。...data.csv", header=True, inferSchema=True) # 显示数据集的前几行 df.show(5) # 对数据进行一些转换 # 例如,我们可以选择某些列,...库 import dask.dataframe as dd # 读取 CSV 文件 df = dd.read_csv('path_to_your_csv_file.csv') #
项目地址:https://github.com/dask/dask 官方文档:https://docs.dask.org/en/latest/ CuPy CuPy 是一个借助 CUDA GPU 库在英伟达...GPU 上实现 Numpy 数组的库。...基于 Numpy 数组的实现,GPU 自身具有的多个 CUDA 核心可以促成更好的并行加速。CuPy 接口是 Numpy 的一个镜像,并且在大多情况下,它可以直接替换 Numpy 使用。...项目地址:https://github.com/cupy/cupy 官方文档:https://docs-cupy.chainer.org/en/stable/ Vaex Vaex是一个开源的 DataFrame...Vaex采用了内存映射、高效的外核算法和延迟计算等概念来获得最佳性能(不浪费内存),一旦数据存为内存映射格式,即便它的磁盘大小超过 100GB,用 Vaex 也可以在瞬间打开它(0.052 秒)。
下面是一个使用列存储数据库的示例代码: import pandas as pd from dask.dataframe import from_pandas import dask.dataframe...as dd # 读取订单数据 orders = pd.read_csv('orders.csv') # 将数据转换为Dask DataFrame ddf = from_pandas(orders,...order amount:', total_amount) print('User 1001 orders:', user_orders) 上述代码中,我们首先使用pandas库读取订单数据,并将其转换为Dask...DataFrame。...然后,我们可以使用Dask DataFrame提供的API进行数据分析和查询操作。 在上述示例中,我们计算了订单数据的总金额,并查询了用户ID为1001的订单数量。
下面我们从安装dask开始简单说说它的用法。 由于该库在anaconda、canopy等IDE下不是内置的,所以首先需要用pip命令安装一下: 安装完毕后即可开始导入数据。...有一点需要注意的是,你对raw的操作都不会真正的运算下去,只会继续添加计划,至于当我们使用compute()函数时它才会真正开始运算,并返回pandas.DataFrame格式的对象。...当我们把整个计划框架搭建好了,比如我们有以下处理流程: (1)先导入; (2)添加一列Z字段,计算规则是raw的X列和Y列的和:raw[‘Z’]=raw[‘X’]+raw[‘Y’] (3)把Z字段中等于...0的样本都挑选出来,new=raw[raw[‘Z’]==0] (4)返回DataFrame格式的new对象,new=new.compute() 在以上数据处理的计划中,只有执行到第(4)步时程序才会真正动起来...比如分组、列运算、apply,map函数等。还是,其使用限制主要有: 1.设定Index和与Index相关的函数操作。
cuDF介绍 cuDF是一个基于Apache Arrow列内存格式的Python GPU DataFrame库,用于加载、连接、聚合、过滤和其他数据操作。cuDF还提供了类似于pandas的API。...Dask: Dask是一个灵活的Python并行计算库,使得在工作流程中平滑而简单地实现规模化。在CPU上,Dask使用Pandas来并行执行DataFrame分区上的操作。...Dask-cuDF: Dask-cuDF在需要的情况下扩展Dask,以允许其DataFrame分区使用cuDF GPU DataFrame而不是Pandas DataFrame进行处理。...Dask-cuDF: 当您希望在多个GPU上分布您的工作流程时,或者您的数据量超过了单个GPU内存的容量,或者希望同时分析许多文件中分布的数据时,您会希望使用Dask-cuDF。..."c": list(range(20)), } ) # read data directly into a dask_cudf.DataFrame with read_csv pdf = pd.DataFrame
领取专属 10元无门槛券
手把手带您无忧上云