前言
在机器学习中,经常提到训练集和测试集,验证集似有似无。感觉挺好奇的,就仔细查找了文献。以下谈谈训练集、验证集和测试集。...只需要把数据集划分为训练集和测试集即可,然后选取5次试验的平均值作为最终的性能评价。
验证集和测试集的区别
那么,训练集、校验集和测试集之间又有什么区别呢?...(花书给出了解答)一是:超参数一般难以优化(无法像普通参数一样通过梯度下降的方式进行优化).二是:超参数很多时候不适合在训练集上进行训练,例如,如果在训练集上训练能控制模型容量的超参数,这些超参数总会被训练成使得模型容量最大的参数...正因为超参数无法在训练集上进行训练,因此我们单独设立了一个验证集,用于选择(人工训练)最优的超参数.因为验证集是用于选择超参数的,因此校验集和训练集是独立不重叠的....测试集是用于在完成神经网络训练过程后,为了客观评价模型在其未见过(未曾影响普通参数和超参数选择)的数据上的性能,因此测试与验证集和训练集之间也是独立不重叠的,而且测试集不能提出对参数或者超参数的修改意见