首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

介绍篇 决策引擎环节

最重要的事情最后都会讲:建模是始终服务于业务的,没有业务的评分卡就没有灵魂 决策引擎概念简述 在我理解上 决策引擎类似是一个管道、运输系统,连通整个风控流程,所有的规则和评分卡以及流程都覆盖其中,分配到每一个环节...(比如人工),将结果返回给决策引擎,走入下一个流程 决策引擎的使用规则 决策引擎的分流效果 评分卡是内置在决策引擎当中,基于评分卡的分段,评分卡的使用具体参见:评分卡在策略中的使用,进行分流,分流决策的目的是为让好客户以及有借款欲望客户进一步走入下一流程...决策引擎规则的顺序 1 并行和串行并举 客户命中规则 或者 客户在某评分卡的某个阶段,共同作用,即条件A或条件B均可进入C环节 2 规则的先后性 内部规则 优于 外部规则,比如黑名单信息,用户的基本信息等...,内部规则的准确性实际上要优于外部规则 3 IV很强的变量实际更适合作为决策引擎的规则 一个变量分箱后,里面全部都是坏客户,那么可以直接作为TK规则,而不是放入评分卡中 4 规则的效率 直接结果和二次处理结果的效率是不同的

64930

风控决策引擎经验

一套完整的风控体系,在风控中,少不了决策引擎,今天就浅谈一下风控决策引擎。 一、优先级 风控决策引擎是一堆风控规则的集合,通过不同的分支、层层规则的递进关系进行运算。...所以,整套风控决策引擎的搭建设计思路,基于规则优先级运算的注意要点如下: 1、自有规则优先于外部规则运行 举例说明:自有本地的黑名单库优先于外部的黑名单数据源运行,如果触发自有本地的黑名单则风控结果可直接终止及输出...所以,整个风控决策引擎的搭建设计思路,基于可调整与可维护的注意要点如下: 1、非刚需与必要的风控规则,能够“开关化” 举例说明:一些必要的风控规则,如用户的银行4要素验证是否一致性,这是必要规则,就无需可开关...因为芝麻信用分是否可作为决策依据将主要取决于业务方向与用户群体,因为理论上芝麻信用分的高低主要与用户在芝麻信用体系内的数据绑定维度的多与少相关,并不一定绝对反映用户的信用程度。

1.2K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    智能决策优化新引擎的“求解”之道

    从某种意义上讲,求解器就像运筹学里的“芯片”,绝大多数复杂系统的决策问题,都需要用求解器寻求最优解决方案。...市场体量的增大与结构性变化的频生,都对智能决策优化的演进创造了良好条件。...罗小渠认为,杉数科技生逢其时,更要把握良机——“目前,我们已形成以求解器COPT为核心计算引擎+决策技术中台+业务场景的完整技术平台,通过对底层技术引擎的升级来驱动更为高效的产品平台和服务,赋能产业向智能化转型...从调度优化到提供端到端的决策优化解决方案,从涉足零售电商到深耕工业互联网,再到成功服务逾20个行业超百家龙头企业,杉数科技的技术引擎一直在迭代更新,而唯一不变的是对客户需求的跟踪与洞察。...复杂业务场景纷繁交织的航空业是决策优化技术的天然拥趸。

    64310

    Node-RED 规则引擎:开启物联网时代的智能决策

    Node-RED 规则引擎:开启物联网时代的智能决策 随着物联网技术的快速发展,大量的设备和传感器正在不断产生海量的数据。...为了有效处理这些数据,并实现智能决策,规则引擎在物联网领域扮演着至关重要的角色。而 Node-RED 规则引擎则以其灵活性和易用性,在物联网开发领域中引起了广泛的关注和应用。...二、Node-RED 规则引擎的特点 灵活性:Node-RED 支持自定义节点和插件,用户可以根据需求扩展功能,实现个性化的规则设计。...三、Node-RED 规则引擎的应用场景 智能家居:在智能家居领域,Node-RED 可以连接各种智能设备,实现设备的联动控制、自动化场景设置等功能。...四、总结 随着物联网技术的不断发展,规则引擎在物联网应用中的作用将越来越重要。Node-RED 规则引擎以其灵活性和易用性为物联网开发者提供了一个强大的工具,使得开发者能够轻松地构建复杂的物联网应用。

    68210

    数据炼金术:从报表堆到决策引擎的进化之路

    数据炼金术:从报表堆到决策引擎的进化之路凌晨三点的会议室里,市场部李总对着20份Excel报表发愁——用户增长数据在CRM系统,库存情况在ERP里,竞品价格躺在爬虫数据库。...某连锁便利店通过Flink实时计算引擎,把补货决策从48小时缩短到15分钟:val env = StreamExecutionEnvironment.getExecutionEnvironmentval...三、决策民主化:让听得见炮声的人开炮某快消品企业曾要求区域经理申请总部数据权限,走流程需要7个审批环节。...当决策权下放到前线,数据才能真正转化为战斗力。站在2025年的十字路口,企业需要的不是更大的数据仓库,而是更智能的数据神经网络。...未来的商业领袖不会是读报表最勤快的人,而是最懂数据交响乐指挥艺术的决策架构师。当每个毛细血管都能自主感知、快速反应时,企业就拥有了数字时代的进化优势——就像单细胞生物到哺乳动物的跃迁。

    2900

    金融科技&大数据产品推荐:恒丰银行实时智能决策引擎

    恒丰银行实时智能决策引擎凭借和大数据相关技术和服务平台进行结合,例如流处理技术、具有推理能力的规则引擎、分布式微服务计算框架、分布式消息队列、具有海量数据查询和分析能力的内存数据库构建的决策引擎具有实时智能决策能力...5、产品功能 恒丰银行实时智能决策引擎分为SaaS和私有版本,产品由运营管理和决策引擎2个系统组成。...系统原理图 决策引擎 决策引擎提供一组API接口,用于集成业务系统,业务数据从业务系统实时下发决策引擎,决策引擎根据运营管理系统的资源配置信息、决策模型/规则配置信息,进行分析计算,计算结果实时输出给业务系统...评分卡规则定义界面如下图: 8) 路由配置管理 路由是一棵决策树,用于制定规则流,用户可根据业务需要配置多个决策路由;路由为引擎的核心部件,路由的引入,一方面可以定义数据在决策引擎中的决策流程...恒丰银行实时智能决策引擎可解决传统的商业决策引擎产品及其应用技术架构无法兼顾实时决策需要的高并发、低延迟、快速策略规则配置并实时发布的应用场景需要,将极大提升各类风险或反欺诈监测的效率、提高风险发现和防范能力

    3.3K90

    战略决策 , 战术决策 与 业务决策

    按决策的范围和决策的重要性划分,可以分为战略决策、战术决策、业务决策。 战略决策是解决全局性、长远性、战略性的重大决策问题的决策。...战术决策又称管理决策,是为了实现战略决策、解决某一问题所做出的决策,以战略决策规定的目标为决策标准。如医院住院流程设计、医院人员的招聘与工资水平等决策。...决策的分类 1、按决策范围分为 战略决策、战术决策和业务决策; 2、按决策性质分为程序化决策和非程序化决策; 3、按决策主体分为个人决策和群体决策; 4、按决策问题的可控程度分为确定型决策、不确定型决策和风险型决策...决策问题分类 确定型、非确定型、风险型 决策问题通常分确定型、非确定型、风险型三种。 由于决策问题的性质不同,群体决策与个人决策的差异及决策人个人的风格不同,其决策的时间和决策的方法也不相同。...战术决策:为了实现战略决策、解决某一问题做出的决策,以战略决策规定的目标为决策标准。 战略决策是关系企业全局和长远发展的重大问题的决策。是非程序化的、带有风险性的决策。

    3.5K20

    【机器学习】农业 4.0 背后的智慧引擎:机器学习助力精准农事决策

    一、数据采集——农事智慧的基石 精准农事决策这座宏伟大厦的第一块基石,无疑是广泛且精准的数据采集工作。...二、机器学习模型搭建——洞察数据的大脑 当海量的数据如涓涓细流汇聚成数据的“汪洋大海”,接下来就轮到机器学习模型登场,扮演挖掘数据宝藏的“掘金者”角色,从中提炼出极具价值的知识与决策依据。...决策树模型便是其中的佼佼者,它恰似一位经验丰富的老农夫,能够依据不同的特征阈值,将纷繁复杂的数据巧妙地划分为条理清晰的不同子集,进而构建出类似树状的结构,将决策过程直观形象地展示出来。...三、精准决策——付诸实践的智慧 当经过精心训练的各类机器学习模型“修炼”完毕,接下来便是它们大显身手,将知识转化为实际生产力,助力精准农事决策的关键时刻。...机器学习赋能下的农业 4.0,彻底改写了传统农业依靠经验决策的历史篇章,让农事决策昂首阔步从经验走向精准科学,大幅提升农业生产效率、降低资源浪费,开启智慧农业的崭新辉煌篇章。

    8210

    一文详解腾讯“金融安全智慧超脑”

    互联网下半场,金融行业安全形势日趋复杂 随着互联网走入了下半场,金融行业数字化转型步伐逐渐加快,同时也带来了许多新的金融模式,增加了防范系统性金融风险的压力。...它能够处理大规模的海量数据,通过机器学习,来制定决策引擎规则;再通过规则对金融活动进行监测、判断和预警,对风险金融行为实现“打早打小”。...目前,腾讯安全已经协助该局累计提示了600多万次金融风险,150多万用户接收到风险提醒,保护了用户的资金安全。...在PaaS层,拥有风险控制决策引擎、复杂网络分析引擎两个自研风控引擎,为合作伙伴提供完善的风控服务;在SaaS层,提供包括反欺诈评分、身份认证、行业风险评估等多种线上服务,可以帮助金融机构对C端用户的身份进行识别和保护...腾讯安全金融风控团队与华夏银行联合打造“龙商贷”业务,为行方提供智慧风控、信贷决策、业务设计及运营管理整体业务解决方案。

    2.4K40

    专访巨量引擎:投入营销科学建设,以数据科学驱动营销决策

    ▍未来 所有企业都需要拥有数据驱动决策的文化 营销领域越来越数字化、科学化,利用数据高效发掘增量,这是大势所趋。巨量引擎认为,数据科学驱动决策是未来每一家企业都需要构建的企业文化。...企业最高决策层首先需要建立这种认知,数据即企业战略资产,助力科学决策,并驱动实际收益与回报。决策层自上而下推动数据意识变革,整个企业才能真正形成数据科学的文化。 ?...关于营销科学为什么聚焦在度量与洞察,巨量引擎营销科学专项负责人阐释道,利用度量去算清楚每一分营销预算的真实效果,再通过洞察去指导下一步营销决策,这样就形成了完整的闭环,给广告交易系统做更优质的输入,从而系统化提升营销效率...巨量引擎会加速开放数据洞察产品的能力,推出全网可见的内容消费趋势洞察平台,助力广告主、代理商以及更多的营销相关从业者提升科学决策的能力。...巨量引擎营销科学专项负责人表示,希望更多营销平台一起参与到营销科学的构建,推进增效度量,让媒体价值更透明;希望更多品牌建立“数据驱动科学决策”的文化,坚信数据的价值,投入更大的资源,提升全链路数字化能力

    1.1K11

    机器学习与大数据分析的结合:智能决策的新引擎

    项目概述本项目旨在使用Python构建一个结合机器学习与大数据分析的智能决策系统,涵盖以下内容:环境配置与依赖安装大数据采集与处理特征工程与数据预处理机器学习模型构建与训练结果预测与评估结果可视化1....('训练准确率和验证准确率的变化趋势')plt.legend()plt.grid(True)plt.show()总结通过本文的介绍,我们展示了如何使用Python构建一个结合机器学习与大数据分析的智能决策系统...该系统集成了大数据采集、处理、特征工程、模型训练、结果预测和可视化等功能,能够有效地分析和预测数据,从而支持智能决策。希望本文能为读者提供有价值的参考,帮助实现机器学习与大数据分析结合的开发和应用。

    14010

    《C++:自动驾驶车辆环境感知与决策控制的核心引擎》

    自动驾驶车辆要在复杂多变的道路环境中安全、高效地行驶,精准的环境感知和智能的决策控制是两大关键要素。...而 C++语言,凭借其卓越的性能、高效的资源管理以及对底层硬件的强大掌控力,在实现自动驾驶车辆的环境感知和决策控制方面发挥着中流砥柱的作用,引领着自动驾驶技术不断突破创新,驶向未来交通的新蓝海。...在多传感器数据融合环节,C++能够以低延迟的方式将来自不同传感器的信息进行整合,构建出完整、准确的车辆周围环境模型,为后续的决策控制提供坚实的数据基础。...基于精准的环境感知,自动驾驶车辆需要做出智能、合理的决策,以确定行驶路径、速度以及应对各种突发情况的策略。这一决策控制过程涉及到复杂的算法和大量的计算资源。C++在其中扮演着关键角色。...在这个伟大的科技变革征程中,C++无疑是自动驾驶车辆在智能交通时代破浪前行的核心引擎,驱动着未来交通的创新与变革,重塑我们的出行方式和交通生态。

    10710

    数据挖掘在金融风险预警中的应用

    按照金融风险产生根源可将金融风险分为静态与动态两类;按风险涉及 范围可分为微观金融风险与宏观金融风险;按照金融机构类别可分为银行风险、证券风险、保险风险与信托风险等。...(6)数据挖掘过程:根据数据仓库中的数据信息,选择合适的分析工具,应用统计方法、事例推理、决策树、规则推理、模糊集,甚至神经网络、遗传算法的方法处理信息,得出有用的分析信息。...财务危机预警模型的建立能够对企业经营失败和财务管理失误现象进行预警和早期控制,为决策者、投资者和债权人提供重要信息。...首先根据主成分分析的特征向量与主成分贡献率计算出对于财务状况影响最大的财务指标,接着根据该分析的结果,把预测期公司的财务状况分为两类作为预测的目标变量,然后运用Logistic回归方法和决策树方法等进行公司财务状况进行预测...此技术应用于金融风险管理无疑非常有益,可提供风险预警,让管理者提前做好准备,为决策提供参考信息,因而使企业极大地降低风险和提高竞争力,为企业的长足发展作出贡献。

    1.3K90

    数据挖掘在金融风险预警中的应用!

    因此数据挖 掘在金融风险预警有着广阔的应用价值和市场前景。 一、金融风险管理 金融风险指任何可能导致企业或机构财物损失的风险,是企业未来收益的不确定性与波动性。...按照金融风险产生根源可将金融风险分为静态与动态两类;按风险涉及 范围可分为微观金融风险与宏观金融风险;按照金融机构类别可分为银行风险、证券风险、保险风险与信托风险等。...购物篮分析 零售店分析改变置物架上的商品排列或是设计吸引客户的商业套餐等 决策树 利用决策树进行推荐引导等 遗传算法 利用遗传算法解决车间调度问题等 聚类分析 通过分组聚类出具有相似浏览行为的客户,分析客户的共同特征...,实施精准营销等 连接分析 电信服务业用连结分析收集到顾客使用电话的时间与频率,进而推断顾客使用偏好为何,提出有利于公司的方案等 OLAP分析 提供对决策人员和高层管理人员的决策支持等 神经网络 机器自我学习...此技术应用于金融风险管理无疑非常有益,可提供风险预警,让管理者提前做好准备,为决策提供参考信息,因而使企业极大地降低风险和提高竞争力,为企业的长足发展作出贡献。

    1.3K50

    《鸿蒙Next的GPU Turbo:决策树在图形AI领域的加速引擎》

    在人工智能与图形处理深度融合的时代,如何提升决策树在图形相关人工智能任务中的处理能力是关键课题。鸿蒙Next的GPU Turbo技术为此带来了强大助力。...提升决策树在图形相关AI任务处理能力的方式- 加速数据预处理:在图形相关的人工智能任务中,决策树模型训练前通常需要对大量图形数据进行预处理,如图像的缩放、裁剪、归一化等。...- 增强模型训练与推理:在决策树的训练过程中,需要进行大量的计算来确定最佳的分裂特征和分裂点。...这使得设备在处理图形相关人工智能任务时,能够保持较低的温度,减少因过热导致的降频现象,从而保证决策树模型能够稳定、高效地运行。...应用案例与展望以智能驾驶场景为例,车辆的摄像头会实时采集大量的道路图像数据,利用鸿蒙Next的GPU Turbo技术,决策树模型可以快速对这些图像进行处理,识别出道路标志、行人、其他车辆等目标,为车辆的行驶决策提供支持

    12310

    活动回顾 & PPT 下载|大模型背景下私域知识库的构建和可信问答 Meetup 完美收官!

    kg-solver 采用逻辑符号引导的混合求解和推理引擎,该引擎包括三种类型的运算符:规划、推理和检索,将自然语言问题转化为结合语言和符号的问题求解过程。...MedSPG:高血压诊疗领域层次化知识建模与多步推理决策 来自北京邮电大学博士研究生周庚显为我们重点介绍致力于解决高血压诊疗领域的知识建模与推理决策问题的 MedSPG。...后向推理引擎从决策目标出发,将其分解为子目标,实现高效准确的多步知识推理,有效解决高血压诊疗中的复杂逻辑推理问题,为精准决策提供有力支持。...大模型辅助下奶业金融风险预警事件图谱构建方法研究来自内蒙古大学计算机学院教师,博士、研究生导师——安春燕为我们重点介绍了“针对奶业金融风险预警事件图谱“内蒙古大学计算机学院教师,博士、研究生导师 安春燕讲师演讲视频链接...通过这些技术,能更全面地捕捉奶业金融领域事件信息,提升图谱质量,从而更精准地进行风险预警,为奶业金融风险管理提供有力支持。

    16910

    决策树的构建、展示与决策

    概述 上一篇文章中,我们介绍了两个决策树构建算法 — ID3、C4.5: 决策树的构建 -- ID3 与 C4.5 算法 本文我们来看看如何使用这两个算法以及其他工具构建和展示我们的决策树。 2....使用 C4.5 构建决策树 有了上一篇日志中,我们介绍的 ID3 与 C4.5 算法,递归进行计算,选出每一层当前的最佳特征以及最佳特征对应的最佳划分特征值,我们就可以构建出完整的决策树了: 流程图非常清晰...决策树的可视化 上面的 json 结果看上去非常不清楚,我们可不可以画出决策树的树结构呢?...:param myTree: 决策树 :return: 决策树的叶子结点的数目 """ numLeafs = 0 # 初始化叶子 firstStr = list...:param myTree: 决策树 :return: 决策树的层数 """ maxDepth = 0 # 初始化决策树深度 firstStr = next

    48220

    蓦然认知戴帅湘:做新一代决策引擎,比DuerOs走得垂直纵深

    “大家发现,‘蓦然’排在‘百度’后,百度是搜索引擎,我们想做的是决策引擎。”戴帅湘说。“认知”指的是人类建模世界的方式,而戴帅湘想用机器构建认知世界的模型,打造决策引擎。 这便是公司名字的由来。...在昨天的“蓦然认知·万物赋声”发布会上,戴帅湘以此开场做演讲,认为新的交互革命中,决策引擎将无缝承接搜索引擎,帮助传统产业走向智能化,还展示了新一代智能决策引擎MorUI 2.0。...想通后,戴帅湘决定,将常用应用及服务放入智能决策引擎Mor,用户不再需要安装任何的应用,未来所有的服务都只需要语音对话来触发。 ?...发布会上,蓦然认知推出了全新“智能决策引擎”MorUI 2.0。与传统UI的最大区别在于,MorUI 2.0既包括GUI,也包含 VUI,并强调两者融合的交互方式。...蓦然认知能基于不同场景模式进行交互决策,并且提供场景的自定义功能。 ? △ 工作人员演示基于“Mor”的智能家居场景 不仅要实现一个自然、高效的交互方式,还要为用户打造一个强大的决策引擎。

    1K40
    领券