前几天在浏览微博的时候,看到某家公司的月度的销量数据的一个数据展示的图表,觉得挺有意思,为什么说有意思呢,因为这家公司在数据图表的呈现上给人的感觉就是这家公司每个月的销售数据都是增长的数据,我们先来看看这家公司对外的一个数据分析图表 这个图表来源于该公司的对外的一个数据展示,在这个图表里我们可以看到貌似好像每个月的销售数据都是增长的,但是你细心的分析下发现他每个月的数据都是月份数据的叠加,2月的数据是 1月+2月, 3月的数据是 所有通过这个图表,不管每个月的销售数据是怎么样,基本上我们看到的图表貌似都是增长的。所有我们想来改一改这个图表,改成一个正常的数据图。 ,一个是每月的销售数据,另外一个是每月的数据增长率,我们选择这个两个字段,插入组合图 这个是插入的原始数据图,在这图我们需要注意几个关键点 1、主坐标和次坐标,增长率是设置一个次坐标 2、主坐标和次坐标的 最终我们数据调整美化后,呈现的效果如下: 这个图表才是真实的每月的销售数据,我们可以看到每个月的销售数据和每个月销售数据的增幅,所以在做数据分析 ,图表呈现的时候,数据分析的思路,逻辑才是最关键的
全网又销售了多少呢?我们一起来看看《618全网销售数据分析报告》吧。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 推荐两个团队技术号 Github研习社:目前是由国内985博士,硕士组成的团体发起并运营,主要分享和研究业界开源项目,学习资源,程序设计,学术交流。回复就无套路送你一份自学大礼包。 主要分享和研究机器学习、深度学习、NLP 、Python,大数据等前沿知识、干货笔记和优质资源。回复就无套路送你一份机器学习大礼包。
适用于业务初期的行为分析、经营策略等分析查询场景,首购限时10元,快来抢购吧!
日常销售报表,时间是非常重要的维度。前一文,我说明了如何不用公式,实现日期自动转换为年、季度、月、周等形式(点击文末阅读原文查看),以便进行业务分析。 但有时,业务逻辑比较复杂,或者数据源不规范,仅凭点击鼠标无法满足对时间维度的分析需求,需要我们用点公式。下面介绍在零售业界常用的几种日期公式使用形态。 (注:此处操作以Power BI Desktop为例,在Excel当中的操作步骤相同) 一、不借助外界数据源,新建完整的日期列表 有时,我们需要这样一张完整的全年日期明细表,方便与业务数据结合。 然后,我们借助Query的添加列功能,快速添加相应的日期维度,从而得到最上方的表格。 二、依据当前时间进行日期动态变化 我们每天需跟踪截止昨天的销售数据,昨天是个相对的位置。 当然如果你仅仅需要在Excel工作簿展现当前日期用today函数就好。 三、销售数据要截止到上个月月底怎么办? 每个月月初,我们要回顾上个月的销售数据,数据截止月底最后一天。
数据的时间是从1月1日到10月30日。 原始数据的内容包括:销售日期、发票号码、销售人、地区、商品代码、商品类型、商品大小分类、销售数量、商品单价。 在数据步里我又根据原始数据生成了另外两项数据:销售月份、销售金额。其中销售月份从销售日期中取得而来,销售金额=销售数量*商品单价。 先对数据进行简单统计: ? 蓝色代表销售额,红色代表销售数量。可以看到1、2月的销售数量和销售金额都远比其它月份低,这是因为该公司员工春节放假较早,从1月15日到2月4日之间都没有数据。 可以看到日销售金额线还是比较满足平稳时间序列的情况的,所以可以对此做时间序列分析,预测后面两个月的销售额。 ? 通过饼图筛选出销售额比较突出的地区。 ? 下面按日期对销售额做时间序列分析: ? 可以看出自相关系数是拖尾的。 ? 可以看出偏相关系数是截尾的,因此可以选择自回归模型作为选定模型。
01.引言 这篇文章是我最近刚做的一个项目,会带领大家使用多种技术实现一个非常有趣的项目,该项目是关于苹果机(iphoneX)的销售数据分析,是网络爬虫和数据分析的综合应用项目。 03.抓取天猫iphoneX的销售数据 因为本项目抓取指定商品销售数据需要使用 JSON 模块中相应的 API 进行分析,因为返回的销售数据是 JSON 格式的,而从搜索页面抓取的商品列表需要分析 用 SQL 语句分析IphoneX(按颜色)销售比例 既然销售数据都保存在Mysql数据库中,那么我们不妨先用 SQL 语句做一下统计分析,本节将对iphoneX的销售量做一个销售比例统计分析。 我们要统计的是某一个颜色的销售数量占整个销售数量的百分比,这里需要统计和计算如下3类数据。 某一个颜色的iphoneX销售数量 iphoneX销售总数量 第1类数据和第2类数据的差值(百分比) 用 Pandas 和 Matplotlib 分析对胸罩销售比例进行可视化分析 接下来将使用
“数据助力业务”大号口喊了很多年,可一提到数据分析,人们习惯性的依然讲的是:excel,python,sql,依然是数据清洗、数据计算、可视化。到底业务部门需要啥样的数据分析,很少有人认真讨论。 数据分析在企业里也是这样。虽然数据分析背后有数学、统计学、运筹学、计算科学、机器学习等等复杂原理,但是业务部门既看不懂,也不在乎。你简单告诉我:“干啥能出业绩”就行了。 特别是销售部门。 单纯一个问题,可能需要好几个点的分析才能支持到位,并且需要经过数据计算,给到一个比随机拨打更高响应率的方案。这就需要数据分析在工作的时候特别有耐心,逐个攻坚问题。 5 为啥平常做的都没啥用 看完上文,可能同学们已经发现了:为啥平时做的销售分析没啥用:大部分公司的数据和销售脱节的很厉害。 作为数据分析师,一不懂销售流程,二不懂组织结构,三不懂话术技巧,每天就知道把销售额=客户数*转化率*客单价的公式翻来覆去的写,拆成各个城市的写。这种东西铁定没啥大用处。
by OI.AMNT desc group by to_char(OI.CRETE_DATE,'yyyy-mm-dd hh24') order by c desc 按小时统计数据
image.png 【面试题】 有一张“课程销售订单表”,包含4个字段:用户id、下单日期、下单id、学科。 汇总分析 查询“每个用户第一个订单”,涉及到“每个”,要想到《猴子 从零学会SQL》里讲过的要用“分组汇总”解决该类问题。 多表联结 上面只获取到第一次下单用户的用户id、第一次下单日期。而题目要求如果同时下单了包含多个课程的订单,则按照“语文、数学、英语”顺序排序。 这就要获取到表里的其它数据。 可以把上面查询结果作为表a1,和“课程销售订单表”(记为表a2)进行多表联结。 使用多表联结,查询每个用户第一个订单的记录: image.png 查询结果: 3. 【本题考点】 1.涉及到“每个”的问题,要想到《猴子从零学会SQL》里讲过的用“分组汇总”或者“窗口函数”来解决 2.考查对多表联结的应用 3.考查对order by中自定义排序的使用 推荐:如何从零学会
数据来源:https://pan.baidu.com/s/1a5kcBy0O0LGO8vo5SXI2Hw 第一步:导入库 import re import numpy from sklearn import linear_model from matplotlib import pyplot as plt 第二步:导入数据 fn = open("C:/Users/***/Desktop/Python数据分析与数据化运营 y.append(float(temp_data[1])) x=numpy.array(x).reshape([100,1]) y=numpy.array(y).reshape([100,1]) 第四步:数据分析 plt.scatter(x,y) plt.show() 第五步:数据建模 model = linear_model.LinearRegression() model.fit(x,y) 第六步:模型评估 r2 = model.score(x,y) #回归方程 y = model_coef*x + model_intercept 第七步:销售预测 new_x = 84610 pre_y = model.predict
要点提示 为了应对日益缩短的产品设计周期,帮助智能手表品牌厂商快速准确地收集用户反馈,从而帮助提高产品质量,我们挖掘了智能手表的网上购买数据,我们从电商平台采集了多个品牌智能手表用户购买评价数据,并进行了数据分析 图一 从图中可以直观地看到,大陆产地的智能手表在高价位区间的评价数量较少,在低价位区间的评价数量较多。国外产地的智能手表在低价格区间的评价数量较少,在高价格区间的评价数量较多。 国内手表厂商通过对部分次要需求功能的取舍,同时将主要功能做到极致,可以有效控制成本,也刺激了更多用户对高性价比的购买欲望。 待机续航时间是通电后,产品处于默认的静止状态,然后开始计时连续监测,直到产品耗尽电量关机,停止计时,并记录整个过程所需时间。 总之,智能手表的功能将随着消费者多样化、个性化的需求而不断丰富,在未来,智能手表将成为人们工作和生活中不可缺少的帮手。 ---- 本文摘选《电商平台销售数据评测智能手表》
Python数据分析pandas之分组统计透视表 大家好,我是架构君,一个会写代码吟诗的架构师 今天说一说Python数据分析pandas之分组统计透视表,希望能够帮助大家进步!!! 数据聚合统计 Padans里的聚合统计即是应用分组的方法对数据框进行聚合统计,常见的有min(最小)、max(最大)、avg(平均值)、sum(求和)、var()、std(标准差)、百分位数、中位数等。 数据框概览 可以通过describe方法查看当前数据框里数值型的统计信息,主要包括条数、均值、标准差、最小值、25分位数、50分位数、75分位数、最大值方面的信息。 如果是查看某列的统计信息,在数据框下加“.”列名即可。
tecdat在家电品牌网络调研项目中,倾听主流电商平台上网民消费者对于家电的各种看法,我们发现在人们的消费理念不断发生变化的今天,家电早已不是一件单纯的满足功能需求的物品,更是一种消费者对自己个性化、品质化的表达 从电商大数据来看,销量Top9的家电品牌,低端价位产品在以价格取胜的品牌中依然占比较高,可以发现,500-1000元价位的定价产品已经崛起。 ? 同时,大数据告诉我们,家电中个性化、休闲娱乐、生活品质、消费电子类、家庭型等元素都被更多的网民所亲睐。 ? 我们发现智能家电的购买率非常高,同时, 新鲜空气系统,以及享受型家电,如游戏系统,美容仪器等也倍受消费者亲睐。 ? ?
很多同学抱怨,销售分析很难做。能用的数据很少,领导们的期望却很高,总指望通过数据能直接提升业绩,咋办!今天我们系统解答一下。销售形式有很多种,不带入具体场景是很难讨论的。 因此我们来个具体场景: 某互联网交易平台,通过线下销售团队招揽企业入住。目前销售部领导找到数据分析师,希望能做一些精准分析,为一线销售赋能,提升销售生产力。问:这个数据分析项目该怎么做? 不信的同学,可以统计下你们公司BI系统在销售部的使用率,能超过10%都很厉害了。 所以,这个题的真正题眼是:一线。在报表压根没人看的情况下,其他的“赋能”、“助力”、“精准”是根本谈不上的。 就拿电话本举例,有些产品经理也关注到了这一点,但是他们特别喜欢在打电话前加一个“工作计划表”非逼着一线去填工作计划。还美其名曰:你看销售流程第一步是列客户名单嘛,所以要定个工作计划,这样科学合理。 如果脑子里装的只有饼图线图条形图,即使真上一个数据产品,最后结果也是:报表打开率5%,只有销售团队老大和销售数据统计砖员俩人会看,看完还甩一句:我早知道了,你说这有啥用…… 这个场景还能继续 比如: 企业背景改为
很多同学抱怨,销售分析很难做。能用的数据很少,领导们的期望却很高,总指望通过数据能直接提升业绩,咋办!今天我们系统解答一下。销售形式有很多种,不带入具体场景是很难讨论的。 因此我们来个具体场景: 某互联网交易平台,通过线下销售团队招揽企业入住。目前销售部领导找到数据分析师,希望能做一些精准分析,为一线销售赋能,提升销售生产力。问:这个数据分析项目该怎么做? 不信的同学,可以统计下你们公司BI系统在销售部的使用率,能超过10%都很厉害了。 所以,这个题的真正题眼是:一线。在报表压根没人看的情况下,其他的“赋能”、“助力”、“精准”是根本谈不上的。 就拿电话本举例,有些产品经理也关注到了这一点,但是他们特别喜欢在打电话前加一个“工作计划表”非逼着一线去填工作计划。还美其名曰:你看销售流程第一步是列客户名单嘛,所以要定个工作计划,这样科学合理。 如果脑子里装的只有饼图线图条形图,即使真上一个数据产品,最后结果也是:报表打开率5%,只有销售团队老大和销售数据统计砖员俩人会看,看完还甩一句:我早知道了,你说这有啥用…… 三、这个场景还能继续 比如:
常见的二维数据透视表(交叉表)通过横向和纵向展示数据,进行一些简单的汇总运算,而传统的数据透视表功能单一,汇总方式简单,已经无法满足现代大数据量各种条件分析,因此多维透视表应运而生。 多维透视表在功能强大的同时,创建难度也会随之提高 多层分组嵌套的复杂的组织结构 复杂的汇总分析公式的编辑 小计和总计的区分等等要面临的复杂问题 如果用代码实现,可能复杂程度不堪想象,更不用谈大数据量级别下报表加载的性能问题 本文以【商品销售额与赠送金额百分比】这一典型的多维透视表为示例,使用葡萄城报表的矩表控件,通过拖拽来实现多维透视表。 报表结构分析 行: 按照区域和省份,嵌套2层分组。 列:按照月份分组,动态列。 添加数据源和数据集 3. 添加矩表控件 添加矩表控件到设计界面,会发现有类似[ 符号,表示分组,即可根据具体数据动态生成行。会发现设计器下面的矩表分组管理器; 4. 添加列分组 根据以上分析,列分组是根据月份而定的,因此只需要默认的一个列分组就足够了,所以不需要添加其他列分组; 添加“销售额”,“搭增”,“比例”静态列: 选中“列分组单元格”插入列,选择分组内-右侧
目 录 1、项目简单介绍 2、项目需求 3、项目设计 4、软件实现——区域分析 1)区域销售分布分析 2)区域占比分析 ① sql分析 ② tableau 项目需求 1)汽车销售分析报告 根据外部数据从市场需求、消费能力、企业竞争、品牌竞争几方面来分析乘用车的市场销售情况。 2)销售绩效分布 外部数据和内部数据相结合,从销售区域、车型、时间等多个维度分析本企业的业绩完成情况。 项目设计 1)区域分析 各区域今年的销售情况及与整体销售的占比; 各区域销售情况(销量和收入)的同比及环比情况; 2)车型分析 各车型12个月的销售趋势; 各车型在不同时间段销售同比及环比情况; 各车型的销售排名 ① sql分析 # 不同区域的销售本月、上月、同期数据,以及收入本月、上月、同期数据 select areaname 区域名称, sum(case when stat_month =
前段时间的主要工作是开发统计系统, 统计公司产品的安装量和回访量,统计数据则由客户端调用C接口写入mysql数据库,即我们只需要分析客户端写入的原始数据即可。 接下来对每个步骤进行梳理: 1、C接口直接写数据到安装表和回访表,原始数据的表采用按年分表,按天分区。原始数据量比较大,也不适合PHP写入。 2、转移数据。 数据更新完之后即可根据该数据出报表,因为统计的字段8个左右,所以累计到一定时间之后,这个表的数据也将会很多,前台不适合直接从这里取报表数据。 5、其他报表。 这意味着唯一键要调整,大部分表结构都需要调整了。 原始表有的有序列号,有的没有,所以首先是原始表统一增加序列号字段,因为转移的数据只将特定的字段值写进去,所以原始表的调整对统计不会有影响。 统计系统调整时先停下所有的脚本,近期表直接删除重建即可,唯一表因为需要处理,边转移边处理一下即可,报表数据保留原有。所以整个过程下来调整并不算大,只是因为数据量比较大,处理觉得麻烦一点而已。
线上平台的数据来源有网站统计工具、ERP系统、客服回访问卷投诉等。 推广方面的分析包含流量分析,停留时间,流量页面,转化率分析。流量的增减(新UV数据)代表市场部推广工作是否有效,新客停留时间浏览页面量和转化率等数据,一定程度上代表了市场部推广是否有针对性。 建立商品维度表,综合考虑商品所有维度,比如价格、型号、外形、品牌、规格等维度,把商品根据不同维度区分,数据分析各品类各维度的销售量,增加高销量维度商品品类占比,精简低销量维度商品品类占比。 促销方式主要依靠数据分析评估效果,每做一次主题促销,就在ERP系统中建立促销单据,设置促销主题,促销商品,促销档期。 对生成订单、但最后没有提交订单的顾客回访,在UI、品类、价格、网站体验、物流、售后等方面统计数据,分析那个方面最影响顾客体验,根据实际情况逐条解决。不断优化。
histogram:类似于terms,也是进行bucket分组操作,接收一个field,按照这个field的值的各个范围区间,进行bucket分组操作 . ,6000~8000,8000~10000类似的,每个范围对应一个bucket 根据price的值,比如2500,看落在哪个区间内,落在2000~4000,此时就会将这条数据放入2000~4000 对应的那个bucket中 histogram也是bucket划分的一种方法,就好比terms,将field值相同的数据划分到一个bucket中 bucket有了之后,就可以对每个bucket执行 avg,count,sum,max,min,等各种metric操作,聚合分析 ---- 案例 需求: 按价格区间统计电视销量和销售额 原始数据: ? : { "field" : "price" } } } } } } 返回数据
概要 用统计指标对定量数据进行统计描述,常从【集中趋势】和【离中趋势】两个方面进行分析。 1、集中趋势的度量 (1)均值:均值为所以数据的平均值。若计算n个观察数据的平均数,计算公式为: ? 有时,为了反映在均值中不同成分的重要程度,为每个观察值 赋予 可以得到加权平均值: ? 2、离中趋势度量 (1)极差 极差=最大值-最小值 极差对数据集的极端值非常敏感,并且忽略了位于最大值于最小值直接的数据分布情况。 (2)标准差 标准差度量数据偏离均值的程度,计算公式为: ? (3)变异系数 变异系数度量标准差相对于均值的离中趋势,主要用来比较两个或多个具有不同单位或者不同波动幅度的数据集的离中趋势。计算公式为: ? 四分位数间距是上四分位数 与下四分位数 之差,其间包含了全部观察值的一半。其值越大,说明数据的变异程度越大;反之说明变异程度越小。 ?
智能数据分析( IDA)基于安全、低成本、高可靠、可弹性的云端大数据架构,帮助企业客户实现从数据采集、建模、挖掘、效果分析、用户标签画像到自动化营销等全场景的数据服务,快速实现数据驱动业务增长的目标。
扫码关注云+社区
领取腾讯云代金券