首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PANDAs_pandas去除缺失值

大家好,又见面了,我是你们的朋友全栈君。 该函数主要用于滤除缺失数据。 如果是Series,则返回一个仅含非空数据和索引值的Series,默认丢弃含有缺失值的行。...xx.dropna() 对于DataFrame: data.dropna(how = 'all') # 传入这个参数后将只丢弃全为缺失值的那些行 data.dropna(axis = 1)...# 丢弃有缺失值的列(一般不会这么做,这样会删掉一个特征) data.dropna(axis=1,how="all") # 丢弃全为缺失值的那些列 data.dropna(axis=0,subset...= ["Age", "Sex"]) # 丢弃‘Age’和‘Sex’这两列中有缺失值的行 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。...如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

44020
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas 处理缺失值

    面对缺失值三种处理方法: option 1: 去掉含有缺失值的样本(行) option 2:将含有缺失值的列(特征向量)去掉 option 3:将缺失值用某些值填充(0,平均值,中值等) 对于dropna..., subset=None, inplace=False) 参数说明: axis: axis=0: 删除包含缺失值的行 axis=1: 删除包含缺失值的列 how: 与axis配合使用 how=‘...:标识如果该行中非缺失值的数量小于10,将删除改行 subset: list 在哪些列中查看是否有缺失值 inplace: 是否在原数据上操作。...如果为真,返回None否则返回新的copy,去掉了缺失值 建议在使用时将全部的缺省参数都写上,便于快速理解 examples: df = pd.DataFrame( { "name": ['Alfred...backfill / bfill :使用后一个值来填充缺失值 limit 填充的缺失值个数限制。

    1.7K20

    pandas中的缺失值处理

    pandas在设计之初,就考虑了这种缺失值的情况,默认情况下,大部分的计算函数都会自动忽略数据集中的缺失值,同时对于缺失值也提供了一些简单的填充和删除函数,常见的几种缺失值操作技巧如下 1....默认的缺失值 当需要人为指定一个缺失值时,默认用None和np.nan来表示,用法如下 >>> import numpy as np >>> import pandas as pd # None被自动识别为...缺失值的判断 为了针对缺失值进行操作,常常需要先判断是否有缺失值的存在,通过isna和notna两个函数可以快速判断,用法如下 >>> a = pd.Series([1, 2, None, 3]) >>...中的大部分运算函数在处理时,都会自动忽略缺失值,这种设计大大提高了我们的编码效率。...同时,通过简单上述几种简单的缺失值函数,可以方便地对缺失值进行相关操作。

    2.6K10

    go语言中的零值

    go语言中的零值是变量没有做初始化时系统默认设置的值 var b bool // bool型零值是false var s string // string的零值是"" 以下六种类型零值常量都是nil var...2.数组和结构类似,有零值,但是没有相应的零值常量。 3.slice是个系统定义的结构,有三个字段:一个指针指到数据存储区,长度,存储区容量。只有三个字段都是零值的时候,这个变量才是零值。...比如make([]int, 0, 0)创建的slice长度和容量都是0,但是指针不为空,所以不是零值。而且也没有办法直接设置slice所指向的指针,所以make出来的都不是零值。...如果所有(递归的)字段都是零值,那么整个结构就是零值。但是没有零值常量用来表示某个结构的零值,所以也就无法用判断语句来识别一个结构是否处于零值。...而且零值状态的结构也没有一个通用的语义,处于零值状态的结构可能意味着没有初始化,也可能是一个正常有用的状态。比如sync.Mutex零值状态就是处于没有锁住状态,是有意义的。

    1K30

    Pandas中替换值的简单方法

    使用内置的 Pandas 方法进行高级数据处理和字符串操作 Pandas 库被广泛用作数据处理和分析工具,用于从数据中清理和提取特征。 在处理数据时,编辑或删除某些数据作为预处理步骤的一部分。...为此,Pandas 提供了多种方法,您可以使用这些方法来处理 DataFrame 中所有数据类型的列。 在这篇文章中,让我们具体看看在 DataFrame 中的列中替换值和子字符串。...import pandas as pd df = pd.read_csv('WordsByCharacter.csv') 使用“替换”来编辑 Pandas DataFrame 系列(列)中的字符串...Pandas 中的 replace 方法允许您在 DataFrame 中的指定系列中搜索值,以查找随后可以更改的值或子字符串。...但是,在想要将不同的值更改为不同的替换值的情况下,不必多次调用 replace 方法。相反,可以简单地传递一个字典,其中键是要搜索的列值,而值是要替换原始值的内容。下面是一个简单的例子。

    5.5K30

    Pandas数据清洗:缺失值处理

    本文将从基础概念出发,逐步深入探讨Pandas库中处理缺失值的方法,包括常见的问题、报错及其解决方案。1. 缺失值的基本概念在数据集中,缺失值通常表示某些数据点没有被记录。...这些缺失值可能是由于数据收集过程中的错误、设备故障或其他原因导致的。在Pandas中,缺失值通常用NaN(Not a Number)表示。2....检测缺失值在处理缺失值之前,首先需要检测数据集中哪些位置存在缺失值。Pandas提供了几种方法来检测缺失值:isnull():返回一个布尔值的DataFrame,表示每个元素是否为缺失值。...常见问题及解决方案4.1 数据类型不一致在处理缺失值时,有时会遇到数据类型不一致的问题。例如,某个列的数据类型应该是整数,但由于缺失值的存在,Pandas会将其自动转换为浮点数。...总结本文介绍了Pandas中处理缺失值的基本方法,包括检测缺失值、删除缺失值、填充缺失值和插值法填充缺失值。同时,我们还讨论了在处理缺失值时可能遇到的一些常见问题及其解决方案。

    20210
    领券