首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

非结构化数据怎么存?——开源对象存储方案介绍

但是构建一个企业级的数据湖(包括结构化和非结构化数据)已经成为了越来越多公司的目标。那么Hadoop还能满足我们的要求吗?还是我们需要更多的选择? 存储方案 如图所示,底层存储大体可以分为四类。...块汇报风暴:HDFS块大小默认128M,启动几百PB数据量的集群时,NameNode需要接受所有块汇报才可以退出安全模式,因此启动时间会达数小时。 毫无疑问,对象存储才是最佳的解决方案。...您可以根据实际需求,创建不同类型的存储空间来存储不同的数据。 开源对象存储方案 部署自己的对象存储的最大优势就是可以把数据存在私有存储里。...还好目前已经有了很多的开源方案已经出现,他们大多支持 Amazon 的 S3 协议,并允许您直接从本地数据湖中查询数据。 MinIO MinIO是个高性能,云原生的对象存储。...https://github.com/ceph/ceph 红帽支持的存储解决方案,能够提供企业中三种常见的存储需求:块存储、文件存储和对象存储,相当于是全平台解决方案。

2.4K10

非结构化数据怎么存?——开源对象存储方案介绍

但是构建一个企业级的数据湖(包括结构化和非结构化数据)已经成为了越来越多公司的目标。那么Hadoop还能满足我们的要求吗?还是我们需要更多的选择? 存储方案 如图所示,底层存储大体可以分为四类。...块汇报风暴:HDFS块大小默认128M,启动几百PB数据量的集群时,NameNode需要接受所有块汇报才可以退出安全模式,因此启动时间会达数小时。 毫无疑问,对象存储才是最佳的解决方案。...您可以根据实际需求,创建不同类型的存储空间来存储不同的数据。 开源对象存储方案 部署自己的对象存储的最大优势就是可以把数据存在私有存储里。...还好目前已经有了很多的开源方案已经出现,他们大多支持 Amazon 的 S3 协议,并允许您直接从本地数据湖中查询数据。 MinIO MinIO是个高性能,云原生的对象存储。...https://github.com/ceph/ceph 红帽支持的存储解决方案,能够提供企业中三种常见的存储需求:块存储、文件存储和对象存储,相当于是全平台解决方案。

4.1K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    非结构化数据治理方案

    对内容数据进行收集、存储、管理和利用的整个过程,已经成为企业提高业务效率和提高盈利能力的有效方法。 01 非结构化数据概述 “非结构化数据”是什么?...相对于结构化数据,非结构化数据具有以下特点:数据存储占比高、数据格式多样、结构不标准且复杂、信息量丰富、处理门槛高。 当前行业公认:非结构化数据占数据总量的80%以上。...下面对比一下结构化数据和非结构化数据的区别: 结构化数据,是指由二维表结构来逻辑表达和实现的数据,严格地遵循数据格式与长度规范,主要通过关系型数据库进行存储和管理。...04 非结构化数据治理解决方案 非结构化数据管理在企业实践中主要体现为 ECM 企业内容管理,其解决方案是通过企业内容管理系统来得到各项非结构化数据管理 工作的具体落地实施。...参考资料: 1、《档案学研究》,2020 年第 6 期 2、《非结构化数据管理解决方案白皮书》,2020版

    2.4K10

    非结构化文本到结构化数据

    将非结构化文本转换为结构化数据是一项常见且重要的任务,特别是在数据分析、自然语言处理和机器学习领域。以下是一些方法和工具,可以帮助大家从非结构化文本中提取有用的结构化数据。...1、问题背景文本数据在我们的日常生活中无处不在,如何将这些文本数据转换为结构化数据是非常有用的,它可以帮助我们更好地管理和利用这些数据。...然而,将非结构化文本转换为结构化数据是一项具有挑战性的任务,因为非结构化文本通常是杂乱无章且不规则的。2、解决方案将非结构化文本转换为结构化数据的解决方案之一是使用自然语言处理(NLP)技术。...NLP技术可以帮助我们理解文本的含义,并将其转换为计算机能够理解的结构化数据。...不同的方法适用于不同类型的非结构化文本和不同的需求,我们可以根据具体的需求和数据选择合适的方法或组合多种方法来实现从非结构化文本到结构化数据的转换。

    24110

    结构化、半结构化和非结构化数据

    一、结构化数据 结构化的数据是指可以使用关系型数据库表示和存储,表现为二维形式的数据。一般特点是:数据以行为单位,一行数据表示一个实体的信息,每一行数据的属性是相同的。...所以,半结构化数据的扩展性是很好的。 三、非结构化数据 非结构化数据是数据结构不规则或不完整,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据。...非结构化数据其格式非常多样,标准也是多样性的,而且在技术上非结构化信息比结构化信息更难标准化和理解。...结合到典型场景中更容易理解,比如企业ERP、财务系统;医疗HIS数据库;教育一卡通;政府行政审批;其他核心数据库等。这些应用需要哪些存储方案呢?...基本包括高速存储应用需求、数据备份需求、数据共享需求以及数据容灾需求。 非结构化数据,包括视频、音频、图片、图像、文档、文本等形式。

    21.6K44

    Python爬虫(九)_非结构化数据与结构化数据

    爬虫的一个重要步骤就是页面解析与数据提取。...更多内容请参考:Python学习指南 页面解析与数据提取 实际上爬虫一共就四个主要步骤: 定(要知道你准备在哪个范围或者网站去搜索) 爬(将所有的网站的内容全部爬下来) 取(分析数据,去掉对我们没用处的数据...) 存(按照我们想要的方式存储和使用) 表(可以根据数据的类型通过一些图标展示) 以前学的就是如何从网站去爬数据,而爬下来的数据却没做分析,现在,就开始对数据做一些分析。...数据,可分为非结构化数据和结构化数据 非结构化数据:先有数据,再有结构 结构化数据:先有结构,再有数据 不同类型的数据,我们需要采用不同的方式来处理 非结构化的数据处理 文本、电话号码、邮箱地址 正则表达式...Python正则表达式 HTML文件 正则表达式 XPath CSS选择器 结构化的数据处理 JSON文件 JSON Path 转化为Python类型进行操作(json类) XML文件 转化为Python

    1.9K60

    《非结构化数据的崛起与挑战》

    在信息时代的浪潮中,非结构化数据正以惊人的速度崛起,成为当今数据领域的热门话题。它犹如一片广阔的海洋,蕴含着无尽的价值和机遇,但同时也带来了巨大的挑战。 非结构化数据的规模极其庞大。...从社交媒体的海量信息到企业内部的文档、邮件,再到图像、音频和视频等各种形式,非结构化数据无处不在。这种数据的快速增长使得传统的数据管理方式已经难以应对。 非结构化数据的价值不容小觑。...存储和管理成本高:大量的非结构化数据需要大量的存储资源和管理工作。 为了应对这些挑战,企业需要采取以下措施: 采用先进的技术:如自然语言处理、机器学习等,以便更好地处理和分析非结构化数据。...建立有效的数据管理策略:确保数据的质量、安全性和可用性。 培养数据科学家和分析师:拥有专业的人才来挖掘数据中的价值。 在未来,非结构化数据有望继续发挥重要作用。...只有那些能够有效地管理和利用非结构化数据的企业,才能在激烈的市场竞争中脱颖而出。 总之,非结构化数据的崛起已经成为不可忽视的趋势。企业应积极应对,充分挖掘其价值,以实现更好的发展。

    12310

    破解非结构化数据存储之困 杉岩开启对象存储更大想象空间丨科技云·视角

    过去几年,大数据产业更多关注的是如何处理海量、多源和异构的数据,但我们必须承认这些只是冰山一角。目前,结构化数据仅占到全部数据量的20%,其余80%都是以文件形式存在的非结构化和半结构化数据。...伴随非结构化数据呈现爆发之势,对象存储市场近两年保持强劲增长,IDC预计,软件定义存储(SDS)市场未来五年复合增长率将达到28.8%。...传统IT架构渐成“过去式” 非结构化数据倒逼存储变革 今天,许多企业已经意识到,结构化数据仅仅是企业所拥有数据的一小部分。...其研发的杉岩海量对象存储(SandStone MOS)已成为海量非结构化数据存储的主流解决方案,其在广发证券档案中心、武汉大学智慧校园云存储平台的成功应用得到了行业用户的广泛好评。...对于海量数据的存储问题,杉岩海量对象存储(SandStone MOS)解决方案采用去中心化分布式架构,同时利用软件定义的方式实现了单一名字空间条件下数百PB级规模的容量扩展,业务可以随时随地访问而不受数据存储位置的限制

    74740

    《非结构化数据:潜力无限的信息宝藏》

    在当今数字化的时代,数据已经成为了企业和组织最宝贵的资产之一。而在这庞大的数据海洋中,非结构化数据正逐渐崭露头角,成为了具有巨大潜力的信息宝藏。...非结构化数据指的是那些没有固定格式或结构的数据,例如文本、图像、音频、视频等。与传统的结构化数据相比,非结构化数据具有以下特点: 多样性:包含了各种类型的信息,如文字、图像、声音等。...大量性:随着互联网和数字化技术的发展,非结构化数据的规模呈指数级增长。 价值密度低:需要通过深入分析和挖掘才能发现其中的价值。 非结构化数据的价值不容小觑。...存储和管理成本高:大量的非结构化数据需要大量的存储空间和管理资源。 为了充分挖掘非结构化数据的价值,企业和组织可以采取以下措施: 建立有效的数据管理策略:确保数据的质量和安全性。...通过有效地管理和利用非结构化数据,企业和组织能够获得更多的价值和竞争优势。

    10210

    如何在MapReduce中处理非结构化数据?

    如何在MapReduce中处理非结构化数据? 在MapReduce中处理非结构化数据,我们可以使用适当的输入格式和自定义的Mapper来解析和处理数据。...下面将以处理日志文件为例,详细介绍如何在MapReduce中处理非结构化数据。 假设我们有一个日志文件,其中包含了网站的访问记录,每行记录包含了访问时间、访问者IP和访问的URL。...以下是可能的运行结果示例: /example/url1 10 /example/url2 5 /example/url3 2 在上述示例中,我们成功地使用MapReduce处理了非结构化的日志数据...通过适当的输入格式和自定义的Mapper和Reducer,我们可以处理各种类型的非结构化数据,并进行相应的分析和计算。

    7010

    【数据蒋堂】非结构化数据分析是忽悠?

    本文字数为1151字,阅读全文约需5分钟 本文为《数据蒋堂》第二期,为你解释为什么非结构化数据分析是忽悠。 大数据概念兴起的同时也带热了非结构化数据分析。...那为什么说非结构化数据分析技术是忽悠呢? 不存在通用的非结构化数据计算技术 非结构化数据五花八门,有声音图像、文本网页、办公文档、设备日志、.......面向非结构化数据的通用技术只是存储 虽然许多专业技术领域都可以归类为对非结构化数据的处理,但总体应用范围并不广泛,大多数用户还用不上这些专门技术,而只是需要把这些数据存储下来。...非结构化数据没有通用的分析计算技术,但存储和相应的管理(增删检索等)是可以通用化的。非结构化数据占据的空间较大,经常需要不同于结构化数据的特殊存储手段。...不过,如果不是数据量特别大,或者有高并发的检索需求,大多数的网络文件系统(如HDFS)已经能够胜任存储和访问需求。厂家如果只喊能做非结构化数据的存储和基本管理,那会显得没什么技术含量。

    2.7K70

    向量数据库101-非结构化数据入门

    顾名思义,非结构化数据是指无法以预先定义的格式存储或无法适应现有数据模型的数据。人工生成的数据——图像、视频、音频、文本文件等等——都是非结构化数据的好例子。但也有许多不那么平凡的非结构化数据。...另一方面,结构化数据是指可以以基于表的格式存储的数据,而半结构化数据是指可以存储在单级或多级数组/键值存储中的数据。如果这一切对你来说还没有意义,不要烦恼。...半结构化数据通常存储在 NoSQL 数据库(宽列存储、对象/文档数据库、键值存储等)中,因为它们的非表性质阻止直接在关系数据库中使用。...这对使用 data1的行业和公司提出了新的挑战: 我们如何以类似于结构化/半结构化数据的方式转换、存储和搜索非结构化数据?...从2010年开始,新的面向用户的应用程序需要数据库来存储半结构化数据(而不是传统的表格数据) ,同样,这十年也需要专门为索引和搜索大量(exabytes)非结构化数据而建立的数据库。 解决办法?

    37010

    Pandas案例精进 | 结构化数据非等值范围查找

    前文回顾: Pandas案例精进 | 结构化数据非等值范围查找 ① Pandas案例精进 | 结构化数据非等值范围查找 ② 本文是承接前两篇的实战案例,没看过的小伙伴建议先点击?...字典查找+二分查找高效匹配 本次优化,主要通过字典查询大幅度加快了查询的效率,几乎实现了将非等值连接转换为等值连接。...首先读取数据: import pandas as pd product = pd.read_excel('sample.xlsx', sheet_name='A') cost = pd.read_excel...可以看到即使如此小的数据量下依然存在几十倍的性能差异,将来更大的数量量时,性能差异会更大。...将非等值连接转换为等值连接 基于以上测试,我们可以将非等值连接转换为等值连接直接连接出结果,完整代码如下: import pandas as pd import bisect product = pd.read_excel

    1.3K30
    领券