如果部署在服务器端就需要自己去搭建配置网络环境并编写调用接口,这是一个极其繁琐耗时的过程。
为什么要写一个这个东西呢?虽然现在好多大网站都不用图片验证码了,但是仍然有一部分陈旧的web系统用着一些简单的图片验证码。当遇到带有验证码,而验证码的形式又非常简单的时候,手工测试起来可能太麻烦。我所知道的现有工具中有“PKAV HTTP Fuzzer”可以识别验证码,并做一些fuzz。但是,这款工具本身不提供,自带的识别引擎的训练工具。并且,软件所支持的次时代和和亦思验证码识别系统都是收费的,没有找到干净好用的破解版。因此,萌发了这样一个念头。先给各位放一张成品图片吧!
当时采用的是pillow+pytesseract,优点是免费,较为易用。但其识别精度一般,若想要更高要求的验证码识别,初学者就只能去选择使用百度API接口了。
近些年来人工智能迅速发展,尤其是在深度学习神经网络这一块生态尤为繁荣,各种算法和模型层出不穷。
本项目使用卷积神经网络识别字符型图片验证码,其基于 TensorFlow 框架。它封装了非常通用的校验、训练、验证、识别和调用 API,极大地减低了识别字符型验证码花费的时间和精力。
暴力破解漏洞的产生是由于服务器端没有做限制,导致攻击者可以通过暴力的手段破解所需信息,如用户名、密码、短信验证码等。暴力破解的关键在于字典的大小及字典是否具有针对性,如登录时,需要输入4位数字的短信验证码,那么暴力破解的范围就是0000~9999。
验证码识别是搞爬虫实现自动化脚本避不开的一个问题。通常验证码识别程序要么部署在本地,要么部署在服务器端。如果部署在服务器端就需要自己去搭建配置网络环境并编写调用接口,这是一个极其繁琐耗时的过程。 但是现在我们通过腾讯云云函数 SCF,就可以快速将本地的验证码识别程序发布上线,极大地提高了开发效率。 效果展示 一种比较简单的验证码 识别扭曲变形的验证码 可以看到,识别效果还是蛮好的,甚至超过了肉眼识别率。 操作步骤 传统的验证码识别流程是 图像预处理(灰化,去噪,切割,二值化,去干扰线等) 验证码字
验证码通常用于网站的登录,以区分是否是人类的行为还是机器的行为。启用验证码是反爬虫、反黑客的常用手段之一。然而,随着技术的不断进步,特别是machine learning的发展,普通的验证码识别也不是很复杂的事情。
上篇文章我们讲解了验证码识别的最佳解决方案,今天我们把验证码识别的能力,服务化,对外输入一个OCR接口。
验证码,全称为“Completely Automated Public Turing test to tell Computers and Humans Apart”,即全自动区分计算机和人类的图灵测试,Captcha。早在上个世纪90年代,为了防止恶意的网络机器人行为,像邮件轰炸、暴力破解密码等,验证码应运而生。
captcha-killer要解决的问题是让burp能用上各种验证码识别技术!插件当前针对的图片类型验证码,其他类型当前不支持。captcha-killer本身无法识别验证码,它专注于对各种验证码识别接口的调用。
验证码识别涉及很多方面的内容。入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足。
验证码分析:图片上有折线,验证码有数字,有英文字母大小写,分类的时候需要更多的样本,验证码的字母是彩色的,图片上有雪花等噪点,因此识别改验证码难度较大。
短信验证码只做了手工测试,当时想的是短信验证码需要一台手机,并且能够发送验证码,由于当时没有做移动端的任何测试,考虑到成本问题只能在自动化测试是放弃这种登录验证方式,只保证功能在手工测试时正常通过;
此脚本只是为了,在抢课时,由于打不开登录页面,需要不停的手动刷新,此脚本代替手动刷新,一直刷到登陆页面出来为止,在刷的时候可以愉快地玩手机
当我们正讨论如何用AI推动产业升级、改变未来生活时,不法分子也在研究AI技术,并通过各种手段非法牟利。近日,腾讯守护者计划安全团队协助警方打掉市面上最大打码平台“快啊答题”,挖掘出一条从撞库盗号、破解验证码到贩卖公民信息、实施网络诈骗的全链条黑产。而在识别验证码这一关键环节,黑产竟已用上AI人工智能技术。该团伙运用AI技术训练机器,极大提升了单位时间内识别验证码的数量,2017年一季度打码量达到259亿次,且识别验证码的精准度超过80%。借此案件,我们也深入研究AI打码平台黑产领域,对其犯罪模式进行剖析。
这是一个比较棘手的问题,多年来,这个问题的解决方案一直就是“验证码”,就是看看你能够能成功识别一系列机器无法识别的扭曲字符。这类安全验证工具被称为“CAPTCHA”(即“全自动区分机器和人类公共图灵测试”)。
1 图像采集:就直接通过HTTP抓HTML,然后分析出图片的url,然后下载保存就可以了
之前有个爬虫需求,但每次请求都需要进行验证码识别,故需要ocr识别,推荐一个Python免费的验证码识别-ddddocr(谐音带带弟弟OCR)
今天给大家分享的实战项目是常用验证码标注&识别,从想法诞生到实现思路,再到编码实战的整体过程,这个过程我前后整理了上万字,计划分章节来发布。言归正传,一起来看看今天的内容吧!今天这篇内容主要讲解这篇文章的创作灵感、需求分析和实现思路。
dddocr是一个基于深度学习的OCR(Optical Character Recognition,光学字符识别)库,用于识别图片中的文字。它可以识别各种类型的文字,包括印刷体、手写体、表格、条形码等。dddocr库使用了深度卷积神经网络(CNN)和循环神经网络(RNN)等先进的模型,具有较高的准确性和稳定性。
OCR(Optical Character Recognition,光学字符识别)是指使用扫描仪或数码相机对文本资料进行扫描成图像文件,然后对图像文件进行分析处理,自动识别获取文字信息及版面信息的软件。一般情况下,对于字符型验证码的识别流程如下:主要过程可以分解为五个步骤:图片清理,字符切分,字符识别,恢复版面、后处理文字几个步骤。通过本章节学习联系搭建OCR环境,使用Tesseract平台对验证码进行识别。
导语:国际顶级会议WWW 2020将于4月20日至24日举行。始于1994年的WWW会议,主要讨论有关Web的发展,其相关技术的标准化以及这些技术对社会和文化的影响,每年有大批的学者、研究人员、技术专家、政策制定者等参与。以下是蚂蚁金服的资深技术专家对入选论文《A Generic Solver Combining Unsupervised Learning and Representation Learning for Breaking Text-Based Captchas》做出的深度解读。
如果验证码不存在绕过漏洞,我们想爆破用户名或者密码,又必须填写正确的验证码,这时候该怎么处理呢?
渗透测试的各位高手们,是不是还在为找不到一个好帮手而郁闷呢?别郁闷了,我来帮你!PKAV HTTP Fuzzer绝对是一你一用就会爱上的好帮手! 但是我们开发这个工具是有使用条件的哦,条件如下: ~$1.本工具运行需要安装.net framework 4.0或以上版本。 ~$2.本工具仅用于安全测试。非正当使用造成的法律纠纷,与我们无关。 ~$3.本工具免费下载和使用,不存在破解版本和收费版本,不存在后门或病毒,有可能被杀毒软件误杀 ~$4.如在使用中发现bug,或您有好的意见或建议,请在PKAV官网
对于web应用程序来讲,处于安全性考虑,在登录的时候,都会设置验证码,验证码的类型种类繁多,有图片中辨别数字字母的,有点击图片中指定的文字的,也有算术计算结果的,再复杂一点就是滑动验证的。诸如此类的验证码,对我们的系统增加了安全性的保障,但是对于我们测试人员来讲,在自动化测试的过程中,无疑是一个棘手的问题。 1、web自动化验证码解决方案 一般在我们测试过程中,登录遇到上述的验证码的时候,有以下种解决方案: 第一种、让开发去掉验证码 第二种、设置一个万能的验证码 第三种、通过cookie绕过登录 第四种、自动识别技术识别验证码 2、自动识别技术识别验证码 前三种解决方案,想必大家都比较了解,本文重点阐述第四种解决方案,也就是验证码的自动识别,关于验证码识别这一块,可以通过两个方案来解决, 第一种是:OCR自动识别技术, 第二种是:通过第三方打码平台的接口来识别。 OCR识别技术 OCR中文名称光学识别, tesseract是一个有名的开源OCR识别框架,它与Leptonica图片处理库结合,可以读取各种格式的图像并将它们转化成超过60种语言的文本,可以不断训练自己的识别库,使图像转换文本的能力不断增强。如果团队深度需要,还可以以它为模板,开发出符合自身需求的OCR引擎。那么接下来给大家介绍一下如何使用tessract来识别我们的验证码。 关于OCR自动识别这一块,需要大家安装Tesseract,并配置好环境,步骤如下 1)、安装tesseract 适用于Tesseract 3.05-02和Tesseract 4.00-beta的 Windows安装程序下载地址:github.com/UB-Mannheim… 2)、加入培训数据 tesseract 默认只能识别英文,如果您想要识别其他语言,则需要下载相应的培训数据 下载地址:github.com/tesseract-o… 下图为中文数据包 我们只做中文,暂时下载一个中文的文字训练数据就可以 ,然后将.traineddata文件复制到安装之后的’tessdata’目录中。C:\OCR\Tesseract-OCR\tessdata 3)、配置环境变量 要从任何位置访问tesseract-OCR,您可能必须将tesseract-OCR二进制文件所在的目录添加到Path变量中C:\OCR\Tesseract-OCR。 安装后tesseract之后 ,并不能直接在python中使用,我们要想在python中使用,需要安装pytesseract模块我们可以通过 pip 安装 pip install pytesseract python中识别验证码图片内容 安装好后。找一张验证码图片,如下图(命名为test.jpg),放在当前python文件同级目录下面, 使用 PIL中的Image中的open方法打开验证码图片,调用pytesseract.image_to_string方法,可以识别图片中的文字,并且转换成字符串,如下面代码所示。 import pytesseract from PIL import Image pic = Image.open(‘test.jpg’) pic 为打开的图片,lang指定识别转换的语言库 text = pytesseract.image_to_string(pic,lang=‘chi_sim’) print(text) 通过上述方法能识别简单的验证码,但是存在一定的问题,识别的精度不高,对于一些复杂一点,有干扰线的验证码无法正确识别出结果。 接下来给大家介绍一下第二种识别的方案,第三方的打码平台识别 打码平台识别验证码 第三方的打码平台相对于OCR来讲,优势在于识别的精准度高,网络上的第三方打码平台很多,百度随便一搜就有几十个,这个给大家列举几个,如下所示: 网络上的第三方打码平台众多,这里小编选择超级鹰这个第三方的平台来给大家做演示。 首先登录我们需要注册登录超级鹰这个网站 www.chaojiying.com,进入之后我们找到python对应的开发文档并下载, 下载开发文档 下载之后解压缩,得到如下文件 第三方打码平台的接口分析 我们打开chaojiying.py这个文件后,会发现这个文件中给出了的接口非常简单,如下所示 首先第一步创建一个用户对象:三个参数(账号,密码,软件ID),账号密码就是该网站的账号密码,那么软件ID呢?软件ID我们可以在用户中心找到软件ID,然后进去点击生成一个软件ID(如下图), 第二行代码就是打开一个要识别的验证码图片,并读取内容, 第三行,调用PostPic方法识别验证码,两个参数(验证码图片内容,验证码类型),关于验证码类型,请参考该网站的价格体系(如下图),根据验证码类型选择对应的数值传入。 结果提取: PostPi
在当今信息时代,网络请求已成为了人们获取数据的重要方式。然而,同时也产生了大量的爬虫行为,这些爬虫可能会对网站的正常运行造成影响,甚至会引发一系列的反爬虫措施。本文将详细介绍网络请求与反爬虫的知识点,以及如何使用Python进行网络请求和应对常见的反爬虫策略。
今天你要学习的验证码采用通过第三方AI平台开放的OCR接口实现,OCR文字识别技术目前已经比较成熟了,而且第三方比较多,今天采用的是百度的。
随着互联网的普及和发展,线上购票已经成为人们生活中不可或缺的一部分。然而,在抢购热门演出门票时,往往会遇到抢票难、抢票快的问题,有时候一秒钟的延迟就意味着与心仪的演出擦肩而过。为了解决这个问题,技术爱好者们开始探索利用Python多线程技术来提高抢票效率。本文将介绍Python实现大麦网抢票的四大关键技术点,帮助读者了解抢票脚本的核心原理,并通过示例代码详细说明实现过程。
寻找可用的IP代理:我们可以在互联网上寻找免费或付费的IP代理服务提供商,选择合适的代理服务器地址和端口号。
相信大家在日常上网的时候都会遇到“千奇百怪”的验证码,而在种类繁多的验证码家族中,文本验证码是使用最广泛的一种,也是我们遇到最多的一种验证码方案。近年来,随着深度学习技术的突破性发展,文本验证码的安全性也受到了挑战。通过收集大量目标网站的验证码,并训练一个深度网络模型,就可以实现对目标网站验证码的攻击。为了抵抗基于深度学习模型的攻击,一方面,各大网站都采用诸如字符扭曲、粘连、旋转,背景混淆,空心字体等多种复杂变换方案来提高文本验证码的安全性;另一方面,有些网站采用了诸如前端代码混淆、关键代码加密等反分析方式来防止验证码被恶意收集和自动爬取,进而通过增大攻击的成本来降低验证码被攻击的可能性。然而,上述两种方式真的能够增强验证码的安全性吗?
java面试(1)如何防止恶意攻击短信验证码接口
Python爬虫之验证码识别 #识别车牌号 from aip import AipOcr import re APP_ID = '15469265' API_KEY = 'rAGFtOChXtO7mnRPiwXg1Frf' SECRET_KEY = 'Ailvoijh4X7lQIAoZ58UsGPlaDCmLIt7' client = AipOcr(APP_ID, API_KEY, SECRET_KEY) """ 读取图片 """ def get_file_content(filePath):
在Python爬虫中,或者使用POST提交的过程中,往往需要提交验证码来验证,除了人工打码,付费的api接口(打码接口),深度学习识别验证码,当然还有适合新人使用的OCR验证码识别库,简单的验证码是可以完全实现自动打码的,比如下面本渣渣分享的通用验证码自动识别库:ddddocr(带带弟弟OCR)!
在对接之前,我们先看一下识别效果,可见效果一般,存在个别识别不出来,又因为需要付费于是不考虑
任何一个网站,如果在登录时网站接入的极验的接口,那么该网站就可以使用极验验证码进行登录,此时极验验证码API就会返回两个极验参数,gt和challenge,这两个参数只跟极验验证码API相关,跟这个网站没有任何关系。
人机验证服务是突破传统验证码的人机识别产品,通过对用户的行为数据、设备特征与网络数据构建多维度数据分析,可以对风险设备使用、模拟行为、暴力重放等攻击进行综合判决,解决企业账号、活动、交易等关键业务环节存在的欺诈威胁问题。早期的验证码通常是一串非常简单的形状标准的数字,经过长期发展,形式越来越多样化,现在简单的数字英文验证码已经很容易被机器读取破解,复杂的验证码设计得愈发反人类。不过得益于机器学习,尤其是深度学习的进步,很多学者和技术大牛都这方面有了一些研究成果,本文将对已有的一些人机验证绕过技术进行总结。
前短时间夜幕团队的哲哥带来一个强大的库,一个验证码识别库 ddddocr,小编第一时间看到后就收藏了,最近有空就找了一个例子来试试。
本文讲述如何通过对比学习算法实现手写数字识别,并使用一个基于SVM的算法进行测试。通过对比不同算法的效果,得出结论:使用基于SVM的算法可以较好地识别手写数字。
各位在企业中做Web漏洞扫描或者渗透测试的朋友,可能会经常遇到需要对图形验证码进行程序识别的需求。很多时候验证码明明很简单(对于非互联网企业,或者企业内网中的应用来说特别如此),但因为没有趁手的识别库,也只能苦哈哈地进行人肉识别,或者无奈地放弃任务。在这里,我分享一下自己使用Python和开源的tesseract OCR引擎做验证码识别的经验,并提供相关的源代码和示例供大家借鉴。 一、关于图形验证码识别与tesseractOCR 尽管多数图型验证码只有区区几个数字或字母,但你可能听说了,在进行机器识别的过程
谷歌的开源深度学习工具 --py 简介 验证码主要用于防刷,传统的验证码识别算法一般需要把验证码分割为单个字符,然后逐个识别,如果字符之间相互重叠,传统的算法就然并卵了,本文采用cnn对验证码进行整体识别。通过本文的学习,大家可以学到几点:1.captcha库生成验证码;2.如何将验证码识别问题转化为分类问题;3.可以训练自己的验证码识别模型。 安装 captcha 库 sudo pip install captcha 生成验证码训练数据 所有的模型训练,数据是王道,本文采用 captcha 库生成验证码,
我最早接触 Serverless 大概是在 18 年 6 月,那时候我在阿里云的学生机刚好到期,那台机子上我有装宝塔面板,然后在上面只放了一个 Typecho 的个人博客站,好像这台服务器似乎一直都是被我拿来当作虚拟主机用,最多也只是登上宝塔面板清一下内存这样子,所以,在我阿里云一年的学生机到期之后,我就果断选择了放弃续费服务器。从那时起我就变成了一个彻底的 Severlesser。
验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的 防火墙功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越来越严峻。本文介绍了一套字符验证码识别的完整流程,对于验证码安全和OCR识别技术都有一定的借鉴意义。
乌鸦安全的技术文章仅供参考,此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等(包括但不限于)进行检测或维护参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的直接或间接后果和损失,均由使用者本人负责。
本文介绍了自动化测试如何解决验证码的问题。首先介绍了验证码的作用,然后列举了三种处理验证码的方法,分别是去掉验证码、设置万能码和验证码识别技术。最后还介绍了一种记录cookie的方法,可以用于UI自动化测试。
本次比赛是全国高校计算机能力挑战赛中的人工智能赛道里的验证码识别,该比赛需要识别26(大写)+26(小写)+数字(10)= 62个字符,随机组成的四位验证码图片。
过年期间我曾经写过一篇文章《一次简单的验证码识别以及思考》, 目前已经对该功能做了一些优化,可以支持几种类型的验证码识别。其核心思想仍然是上一篇文章所提到的,使用tensorflow来训练标注过的验证码。目前,多种类型的验证码训练完之后可以放到一个模型中。未来,有新增的验证码类型通过训练之后也可以整合到这个模型中。
上一篇基础篇: https://blog.csdn.net/weixin_43582101/article/details/90082023
2Captcha是一个自动验证码识别服务,主要用于解决各种互联网服务中的验证码问题。在许多网站注册账户或进行敏感操作时,为了验证用户是真实的而不是自动化程序,会出现验证码。用户必须正确输入验证码,才能继续使用网站的功能。该框架的目标是帮助客户自动化解决验证码问题。客户可以通过付费将需要解决的验证码发送给2Captcha,然后由2Captcha将这些验证码分发给专业的打码员进行输入。这些打码员是人工操作,而不是机器,他们能够快速有效地识别验证码,确保客户能够顺利通过验证码验证,继续使用所需的功能。
领取专属 10元无门槛券
手把手带您无忧上云