首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    大数据学习笔记0:大数据基本框架

    Iaas、K8S、Omega都属于这一层。 计算引擎层 计算引擎层是大数据技术中最活跃的一层,直到今天,仍不断有新的计算引擎被提出。 总体上讲,可按照对时间性能的要求,将计算引擎分为三类: ❑ 批处理:该类计算引擎对时间要求最低,一般处理时间为分钟到小时级别,甚至天级别,它追求的是高吞吐率,即单位时间内处理的数据量尽可能大,典型的应用有搜索引擎构建索引、批量数据分析等。 ❑ 交互式处理:该类计算引擎对时间要求比较高,一般要求处理时间为秒级别,这类系统需要跟人进行交互,因此会提供类SQL的语言便于用户使用,典型的应用有数据查询、参数化报表生成等。 ❑ 实时处理:该类计算引擎对时间要求最高,一般处理延迟在秒级以内,典型的应用有广告系统、舆情监测等。 数据分析层 数据分析层直接跟用户应用程序对接,为其提供易用的数据处理工具。为了让用户分析数据更加容易,计算引擎会提供多样化的工具,包括应用程序API、类SQL查询语言、数据挖掘SDK等。 在解决实际问题时,数据科学家往往需根据应用的特点,从数据分析层选择合适的工具,大部分情况下,可能会结合使用多种工具,典型的使用模式是:首先使用批处理框架对原始海量数据进行分析,产生较小规模的数据集,在此基础上,再使用交互式处理工具对该数据集进行快速查询,获取最终结果。 数据可视化层 数据可视化层是直接面向用户展示结果的一层,由于该层直接对接用户,是展示大数据价值的“门户”,因此数据可视化是极具意义的。考虑到大数据具有容量大、结构复杂和维度多等特点,对大数据进行可视化是极具挑战性的。

    01

    独家 | 教你实现数据集多维可视化(附代码)

    翻译:张媛 校对:卢苗苗 用代码将你的数据集进行多维可视化! 介绍 描述性分析是与数据科学或特定研究相关的任何分析生命周期中的核心组成部分之一。数据聚合,汇总与可视化是支撑数据分析这一领域的主要支柱。从传统商业智能时代开始,即使在如今的人工智能时代,数据可视化一直是一种强大的工具,由于其能够有效地抽象出正确的信息,清晰直观地理解和解释数据结果而被很多组织广泛地采用。然而处理通常具有两个以上属性的数据集时开始出现问题,因为数据分析和通信的媒介一般局限于两个维度。在本文中,我们将探讨多维数据可视化过程中的一些

    011
    领券