最近发现NCAR VAPOR小组开始频繁的更新VAPOR的使用教程,不仅官网焕然一新,而且开始定期更新视频教程。VAPOR已经发布了很久,但是以前文档说明并不是很清楚,教程也比较少。此次VAPOR更新网站和相关教程是否意味着NCAR又开始重视高维数据可视化?
每每提到数据可视化,大家脑中可能会浮现很各种图表、西装革履的分析师、科幻大片中酷炫的仪表。
最近又开始关注数据可视化的内容了,尤其是高维可视化。个人感觉可视化真的是一门呈现信息的艺术。前期的数据处理从海量的数据中提取有效信息,然后以一种简洁美观的方式呈现出来。
高维数据在这里泛指高维和多变量数据,它蕴含的数据特征与二维、三维不同空间数据不同。其中,高维是指数据具有多个独立属性,多变量是指数据具有多个相关属性。
大数据可视化的新动态 Intetix Foundation(英明泰思基金会)由从事数据科学、非营利组织和公共政策研究的中国学者发起成立,致力于通过数据科学改善人类社会和自然环境。通过联络、动员中美最顶尖的数据科学家和社会科学家,以及分布在全球的志愿者,我们创造性地践行着我们的使命:为美好生活洞见数据价值。 1 引言 数据可视化是将数据以不同形式展现在不同系统中,其中包括属性和变量的单位信息[1]。基于可视化发现数据的方法允许用户使用不同的数据源,来创建自定义分析。先进的分析集成了许多方法,为了支持交互式
大数据可视化的解决方案,与普遍意义理解的数据可视化不同,其面临的问题又分两个不同的层面:一是数据层;二是可视化层。
之前在介绍高维数据可视化时说过后面会说WRF模式后处理的高维可视化,这跳票一跳就是差不多一年半,今天从其Vis5d的角度说一下WRF模式的高维可视化。
地图本身就是可视化的产品,并在发展过程中形成了一系列的理论与方法。这些都自然地会成为地理空间数据可视化技术的基础。地图学也因可视化方法的提出而获得新的动力。GIS也因可视化的支持而为研究者提供了促使逻辑思维与形象思维相结合的认知工具。
new THING.widget.Button('顶视图', function() {
高维数据是一种非常常见的数据类型,其中包含了多种属性。比如:数值模式输出结果通常包含多种物理参量及多个时次,还有一些空间位置信息。尽管高维数据非常常见,但是高维数据的分析一直是个挑战。那么如何才能有效的分析高维数据呢?就此问题,本文主要介绍一些气象领域的高维数据可视化工具。
视觉编码是一种:将数据信息(属性 + 值)映射成可视化元素(可视化符号 + 视觉通道)的技术
ArcGIS软件是由美国Esri公司开发的一款基于地理信息系统技术的专业软件,其功能强大,具有多种高级的数据分析和可视化功能。本论文将介绍ArcGIS软件的特点和使用方法,并以一个实例来演示ArcGIS软件的使用流程,包括其数据输入、分析、可视化等环节的操作步骤。最后,本文还将对ArcGIS软件的优点和不足进行探讨。
现在的单细胞分析,往往避免不了scanpy的使用,我们可以通过对比seurat来学习scanpy
在机器学习中,随着数据特征的增加,需要更大的计算资源来训练模型。这可能导致模型的训练时间和内存消耗增加,甚至可能导致模型无法训练或训练结果不准确。
今天只是分享一些python库,涉及到地理数据分析,数据可视化和数据处理三个方面。
数据可视化是数据分析中极为重要的部分,而数据可视化图表(如条形图,散点图,折线图,地理图等)也是非常关键的一环。Python作为数据分析中最流行的编程语言之一,有几个库可以创建精美而复杂的数据可视化,允许分析人员和统计人员通过方便地在一处提供界面和数据可视化工具而轻松地根据其规范创建可视数据模型!
如果我们想比较某个数值在不同分组之间的变化差异。或者随着时间序列的变化趋势,往往会用到折线图。折线图是在我们的科研绘图当中最为常用的图形之一。
8 月 5 日晚,GraphVite 开发者 @唐建(MILA 实验室助理教授,曾获 ICML 2014最佳论文、WWW16 最佳论文提名) 在社交平台上公布了这个图表示学习系统开源的消息。他表示,在百万节点的图上,使用该系统仅需 1 分钟左右就可以学习节点的表示。该系统的目标是为广泛的嵌入方法系列提供通用和高性能的框架,这将非常有利于图学习算法的研究与部署。雷锋网 AI 开发者将其具体介绍及相关地址编译如下。
从word2vec算法发表以后,各种嵌入方法越来越火热,而LINE算法就是一种网络嵌入的算法。 使用LargeVis可视化的MNIST数据集 所谓网络嵌入,就是将一个网络里面的各个节点用向量表示出来。例如,所有节点都使用一个二维向量表示,那么就说这个网络嵌入了一个二维空间。类似的,也可以嵌入三维或更高维的空间。 LINE算法 基本思路是:如果两个节点在网络上相连,那么它们所对应的向量之间的距离也应该比较小。 要学习的参数就是每个节点对应的向量,例如共有10个节点,每个节点打算嵌入到3维空间里,那么就共有
不过广义上,可视化无处不在, 打开浏览器, 网站就是个数据可视化, 背后是数据库密密麻麻的数据表, 到了你的浏览器就是浅显易懂的页面。
大数据的核心不是“大”,也不是“数据”,而是蕴含在其中的商业价值。作为挖掘数据背后潜在价值的重要手段,商业智能和分析平台成为大数据部署中的 关键环节。然而,获取价值的难点并不在于数据分析应用的部署,而在于专业数据分析人才的缺乏。市场研究机构IDC甚至认为,数据分析人才的欠缺可能会成为 影响大数据市场发展的重要因素。 “让每个人都成为数据分析师”是大数据时代赋予的要求,数据可视化的出现恰恰从侧面缓解了专业数据分析人才的缺乏。Tableau、Qlik、 Microsoft、Sas
在PCA中,要做的是找到一个方向向量(Vector direction),当把所有的数据都投射到该向量上时,PCA的关键点就是找到一个投影平面使得投影误差最小化。
早期的数据小魔方用户大概都知道,我最初也是从学习Excel起步的,只是学习的深入了之后,才开开慢慢的迁移到R语言。 我往R语言转型并不代表自己开始放弃Excel或者觉得Excel不适合做可视化,只是想体验一下Excel外围的可视化世界是什么样子的,毕竟在这个大行业内,还活跃着太多可视化领域的佼佼者,譬如 PowerBI、Tableau等。 当然,这些软件各有特点,但是在要划分一个类别的话,我觉得可以划分为三类: Excel(以及寄生于Excel平台的各种辅助软件dashboard、Think-cell-ch
英国设计专家大卫·麦坎德利斯(David McCandless) 曾说过:“我们接受的信息中80%来自视觉。借助图形化的手段能够以简单、优雅的方式来查看可能太复杂或太大、太小、抽象或分散而无法掌握的信息。”
随着信息技术发展,教育领域中的学习方式、教学模式、教学内容均已发生重大变革,以云计算、人工智能、物联网、大数据等技术的结合,“智慧教育”的需求也变的紧迫,需要围绕“智慧教育”而产生的产品和解决方案也在迅猛发展。
对一些因变量进行dummy variable转换。对大数值变量如引擎容量,已行驶的公里数进行log transformation。
参考:小白必读!大屏数据可视化设计的原则和流程 数据可视化大屏设计步骤,有3步流程 大屏可视化设计尺寸高级指南
相信大多数人都已经接触过数据可视化——Excel 随便画一张表就是了。众所周知,二维数据可视化很容易,条形图、饼状图等等,我们在初中就已经学过了。那么三维数据呢?可能有些接触到音频产品的朋友会说瀑布图,很好。而 N 维数据呢?物理学告诉我们:低维空间只能观察到高维空间在本维度的投影。既然我们本身的维度无法增加,那么就只能想办法把数据的维度降低了。
在生活中工作中,我们经常使用Excel用于储存数据,Tableau等BI程序处理数据并进行可视化。我们也经常使用R、Python编程进行高质量的数据可视化,生成制作了不少精美优雅的图表。
Iaas、K8S、Omega都属于这一层。 计算引擎层 计算引擎层是大数据技术中最活跃的一层,直到今天,仍不断有新的计算引擎被提出。 总体上讲,可按照对时间性能的要求,将计算引擎分为三类: ❑ 批处理:该类计算引擎对时间要求最低,一般处理时间为分钟到小时级别,甚至天级别,它追求的是高吞吐率,即单位时间内处理的数据量尽可能大,典型的应用有搜索引擎构建索引、批量数据分析等。 ❑ 交互式处理:该类计算引擎对时间要求比较高,一般要求处理时间为秒级别,这类系统需要跟人进行交互,因此会提供类SQL的语言便于用户使用,典型的应用有数据查询、参数化报表生成等。 ❑ 实时处理:该类计算引擎对时间要求最高,一般处理延迟在秒级以内,典型的应用有广告系统、舆情监测等。 数据分析层 数据分析层直接跟用户应用程序对接,为其提供易用的数据处理工具。为了让用户分析数据更加容易,计算引擎会提供多样化的工具,包括应用程序API、类SQL查询语言、数据挖掘SDK等。 在解决实际问题时,数据科学家往往需根据应用的特点,从数据分析层选择合适的工具,大部分情况下,可能会结合使用多种工具,典型的使用模式是:首先使用批处理框架对原始海量数据进行分析,产生较小规模的数据集,在此基础上,再使用交互式处理工具对该数据集进行快速查询,获取最终结果。 数据可视化层 数据可视化层是直接面向用户展示结果的一层,由于该层直接对接用户,是展示大数据价值的“门户”,因此数据可视化是极具意义的。考虑到大数据具有容量大、结构复杂和维度多等特点,对大数据进行可视化是极具挑战性的。
最近在项目上常常听到这样的话:“我想要一个酷炫的数据大屏”,“设计一定要有科技感”,“这个可视化设计没有重点”……每当听到这些需求,作为设计师一般都是欲哭无泪的。到底什么叫酷炫有科技感?客户理解的数据大屏什么样?是数据还是可视化出了问题?? 这篇文章将会结合最近在数据可视化项目上的一些经历,从设计的角度,聊一聊什么是数据可视化,为什么需要可视化设计,以及该从何处着手来设计一个数据可视化平台。 1. 什么是数据可视化设计?(WHAT) 在聊如何设计数据可视化平台前,想先聊一下我所理解的数据可视化。“数据可视化
本文系投稿作品,作者 | Karen 大数据文摘欢迎各类优质稿件 请联系tougao@bigdatadigest.cn 除了应用于新闻领域(点击查看相关文章2016年下半年10个重要的可视化发展),今年,可视化在学术界也有不少优秀成果——来自刚结束的国际可视化盛会之一的IEEE PacificVis 2017的十个演讲,涵盖了城市数据可视化、科学可视化、图可视化、高维数据可视化、人机交互(HCI)、AR/VR、数据叙事、可视分析等多个方面。 温馨提示:文中提到的大量文章及案例,笔者都帮你整理好了,请移步文
翻译:张媛 校对:卢苗苗 用代码将你的数据集进行多维可视化! 介绍 描述性分析是与数据科学或特定研究相关的任何分析生命周期中的核心组成部分之一。数据聚合,汇总与可视化是支撑数据分析这一领域的主要支柱。从传统商业智能时代开始,即使在如今的人工智能时代,数据可视化一直是一种强大的工具,由于其能够有效地抽象出正确的信息,清晰直观地理解和解释数据结果而被很多组织广泛地采用。然而处理通常具有两个以上属性的数据集时开始出现问题,因为数据分析和通信的媒介一般局限于两个维度。在本文中,我们将探讨多维数据可视化过程中的一些
教程地址:http://www.showmeai.tech/tutorials/33
最近,我参加了在芝加哥举办的IEEE 2015可视化大会,并草草记录了一些有关机器学习的内容。对于那些不了解该会议的人来说,你有必要了解下,这是从业者、学者和研究人员最大的一次年度聚会,它们的研究方向是如何将数据进行可视化并且对我们可用。会议论文主要来自IEEE VIS的三个核心子会议:可视分析科学与技术(Visual Analytics Science and Technology,VAST)、信息可视化(Information Visualization,InfoVis) 、科学可视化(Scientif
数据可视化是将数据转化为图形、图表和可视元素的过程,旨在帮助人们更好地理解数据、发现模式并得出洞察。在信息时代,数据可视化已经成为解决复杂问题、支持决策制定和传达信息的不可或缺的工具。本文将深入探讨数据可视化的重要性、不同类型的可视化方法、最佳实践以及如何有效地利用数据可视化来解锁数据的潜力。
直播回看地址 https://appqtulvsie4217.pc.xiaoe-tech.com/detail/l_5e5dd4cfd2ef3_4Ramdutd/4?fromH5=true#/ 数据可
本文从大数据应用出发,讨论数据可视化在大数据时代所面临的一系列挑战,并重点介绍AutoVis针对这些挑战所做尝试及其体系架构、关键技术和功能特点。
机器学习在数据分析与挖掘中的应用越来越广泛,随着机器学习模型的不断发展,处理的数据量和数据维度越来越大,衡量模型性能和可视化数据信息变得至关重要。一般来说用于挖掘的数据信息都是多维的,而目前数据可视化一般为二维或者三维的,要想对高维数据可视化必须进行降维。
向AI转型的程序员都关注了这个号 大数据挖掘DT数据分析 公众号: datadw 我们在对数据进行预处理时,常常需要对数据做一些可视化的工作,以便能更清晰的认识数据内部的规律。 这里我们以kaggle案例泰坦尼克问题的数据做一些常用的可视化的工作。首先看下这个数据集: 我们换一个连续性变量多的数据集,看看特征直接相关度。 下面我们看看高维数据如何做可视化分析,首先咱们造个高维数据集 数据的可视化有很多工具包可以用,比如下面我们用来做数据可视化的工具包Seab
Origin软件是一款非常强大的科学数据分析和图形绘制软件。它不仅致力于提供最先进的分析工具,而且还提供了一些独特的功能,这些功能可以帮助你更好地理解你的数据和结果。在本文中,我将介绍五个Origin软件的独特功能,并通过实例展示其应用。
霓虹之下的机械义肢,孤独黑客的代码觉醒,隐匿于雨夜的反叛灵魂…这些具有独一无二锐利感的画面,让“赛博朋克”这个起源自80年代的文化命题已经从小众文化火出圈,渗透至主流社会跃升为审美时尚。
在数据科学领域,数据可视化无疑是当今的首要词汇。无论想分析哪些数据,进行数据可视化似乎都是必要的步骤。但是很多人没有特定的数据可视化概念,也不知道如何实现它。所以,今天将带您了解数据可视化的定义,概念,实现过程和工具。
领取专属 10元无门槛券
手把手带您无忧上云