在制作PowerBI报告时,一般来说,我们都会创建一些切片器。为了节省空间,一般情况下尤其是类目比较多的时候,大多采用下拉式的: ?...不过,在选项比较多的时候,当你需要查找某个或者某几个城市的销售额时,你会发现这是一件很难办的事情,比如我们要看一下青岛的销售额时: ?...你可能会来回翻好几遍才会找到,这时候再让你去找济南的销售情况,你恐怕会抓狂。 那,有没有能够在切片器中进行搜索的选项呢? 答案是:有的。 如图: ?...只要在Power BI Desktop的报告中鼠标左键选中切片器,按一下Ctrl+F即可。此时,切片器中会出现搜索框,在搜索框中输入内容点击选择即可: ?...如果想同时看青岛和济南的销售额,可以在选中青岛后,重新搜索济南,然后按住Ctrl点击鼠标左键即可: ? 发布到云端,同样也可以进行搜索: ?
DNN在搜索场景中的应用潜力,也许会比你想象的更大。 --《阿里技术》 1.背 景 搜索排序的特征在于大量的使用了LR,GBDT,SVM等模型及其变种。...再考虑的是如果把用户行为序列建模起来,我们希望是用户打开手淘后,先在有好货点了一个商品,再在猜你希望点了一个商品,最后进入搜索后会受到之前的行为的影响,当然有很多类似的方法可以间接实现这样的想法。...在FNN的基础上,又加上了人工的一些特征,让模型可以主动抓住经验中更有用的特征。 ? ? 3. Deep Learning模型 在搜索中,使用了DNN进行了尝试了转化率预估模型。...在普适的CTR场景中,用户、商品、查询等若干个域的特征维度合计高达几十亿,假设在输入层后直接连接100个输出神经元的全连接层,那么这个模型的参数规模将达到千亿规模。...在以上的流程中,无法处理有重叠词语的两个查询短语的关系,比如“红色连衣裙”,“红色鞋子”,这两个查询短语都有“红色”这个词语,但是在往常的处理中,这两者并没有任何关系,是独立的两个查询ID,如此一来可能会丢掉一些用户对某些词语偏好的
搜索人名是我们在许多应用程序中经常用到的功能。比如对书店来说,按作者名检索的功能就相当重要。虽然很难起一个完美的名字,但是我们可以使用Solr的一些功能,使绝大多数英文名搜索达到绝佳的效果。...如果我们能够解决两个主要问题,人名搜索的问题就解决一大半了。 作者姓名重排,无论是在文档还是查询中,有些部分都被省略了:(Doug Turnbull, D. Turnbull, D. G....] [dougl] [dougla] [douglas] 有关此过滤器(以及Solr中的许多其他过滤器)需要注意的是,每个生成的标记最终在索引文档中占据相同的位置。...Turnbull出现的每一处(以及有David G. Turnbull的地方)! 结合 好的,进入下一环节。现在用户在搜索框中输入“Turnbull,D.”。然后呢?...路还很长 这是一个很好的开始,但搜索是一条改进空间巨大的探索之路。要让这个搜索系统无懈可击,还有很多工作要做。除了我所违反的文化习惯之外,还有很多问题留给读者: 来Solr培训解决这些问题!
条件操作符用于比较两个表达式并从mongoDB集合中获取数据。...MongoDB中条件操作符有: (>) 大于 - $gt (<) 小于 - $lt (>=) 大于等于 - $gte (<= ) 小于等于 - $lte MongoDB 使用 $regex 操作符来设置匹配字符串的正则表达式...MongoDB OR 条件语句使用了关键字 $or 下面是具体一个PHP例子中的$filter数组: array(3) { ["$or"]=> array(2) { [0]=>
并在客户需求有变更后能够第一时间告知团队以做出调整。 在我们团队中,这个角色就是一开始提到的BA。...实际上在开发过程中,也未发生过这种情况,因为一旦客户的需求变更后,Story卡也会及时变更过来。...我比较推荐DEV在kick off后将Story划分成子任务列表,按照依赖关系和优先级排序,逐个干掉他们。...我也经历过客户要求测试覆盖率的项目,有专门的测试覆盖率工具(coveralls)来检测代码库,有的甚至集成在CI上作为一个硬性指标。 所以,TDD必须在一个有测试的项目中去讲。...Showcase能够让团队在每个迭代完成后及时从客户那得到反馈,对变化做出快速的响应,避免了劳动成果的浪费以及方向的偏离,也能最大化让客户的期望得到满足。
大家好,我是戴先生 今天给大家介绍一下如何利用玄学二分法找出目标值元素 想直奔主题的可直接看思路2 ##题目 整数数组 nums 按升序排列,数组中的值互不相同 在传递给函数之前,nums...: 将数组第一个元素挪到最后的操作,称之为一次旋转 现将nums进行了若干次旋转 给你 旋转后 的数组 nums 和一个整数 target 如果 nums 中存在这个目标值 target 则返回它的下标...给定的旋转后数组 * @param target 目标值 * @return 查询结果 */ public static int getIndex(int[] num...这样思路就非常清晰了 在二分查找的时候可以很容易判断出 当前的中位数是在第一段还是第二段中 最终问题会简化为在一个增序数据中的普通二分查找 我们用数组[1,2,3,4,5,6,7,8,9]举例说明 target...所以可以判断出 此时mid=4是处在第一段中的 而且目标值在mid=4的前边 此时,查找就简化为了在增序数据中的查找了 以此类推还有其他四种情况: mid值在第一段,且在目标值的前边 mid值在第二段
作者:仁重 淘宝搜索事业部 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
NLP技术在搜索推荐中的应用非常广泛,例如在搜索广告的CTR预估模型中,NLP技术可以从语义角度提取一些对CTR预测有效的信息;在搜索场景中,也经常需要使用NLP技术确定展现的物料与搜索query的相关性...今天这篇文章梳理了NLP技术在搜索推荐场景中3个方面的应用,分别是NLP提升CTR预估效果、NLP解决搜索场景相关性问题、NLP信息优化基于推荐系统效果。...本文为了刻画user与item之间发生交互行为的底层因素,采用了分解学习的方法,根据user-item的打分信息以及user的评论信息分别学习两个表示,然后在分解学习得到多个因素后,在因素这个维度进行两个表示的对齐...4 总结 本文主要介绍了NLP技术在搜索推荐场景中的应用。...在搜索推荐中,文本信息是很常见的一种信息来源,因此如何利用文本信息提升CTR预估、推荐等模型效果,以及如何利用NLP技术解决相关性问题,都是搜推广场景中很有价值的研究点。 END
文章分享了深度学习在酒店搜索NLP中的应用,并重点介绍了深度学习排序模型在美团酒店搜索的演进路线。...本文会首先介绍一下酒店搜索的业务特点,作为O2O搜索的一种,酒店搜索和传统的搜索排序相比存在很大的不同。第二部分介绍深度学习在酒店搜索NLP中的应用。...在技术层面上,也存在很多不同点。网页搜索会索引全网的数据,这些数据不是它自己生产,数据来源非常多样,包括新闻、下载页、视频页、音乐页等各种不同的形态,所以整个数据是非结构化的,差异也很大。...同义词:在北京搜索“一中”和搜索“北京第一中学”,其实都是同一个意思,需要挖掘同义词。 ?...把疑似地标词放到美团地图服务中获取经纬度,经过人工校验无误后,存入线上数据库中;线上来查询请求时,先会去匹配精准地标库,如果匹配成功,说明这个查询词是地标意图,这时就不走文本检索了,直接在意图服务层走经纬度检索
本文会首先介绍一下酒店搜索的业务特点,作为O2O搜索的一种,酒店搜索和传统的搜索排序相比存在很大的不同。第二部分介绍深度学习在酒店搜索NLP中的应用。...在技术层面上,也存在很多不同点。网页搜索会索引全网的数据,这些数据不是它自己生产,数据来源非常多样,包括新闻、下载页、视频页、音乐页等各种不同的形态,所以整个数据是非结构化的,差异也很大。...同义词:在北京搜索“一中”和搜索“北京第一中学”,其实都是同一个意思,需要挖掘同义词。 [1683aac7e42e3441?...把疑似地标词放到美团地图服务中获取经纬度,经过人工校验无误后,存入线上数据库中;线上来查询请求时,先会去匹配精准地标库,如果匹配成功,说明这个查询词是地标意图,这时就不走文本检索了,直接在意图服务层走经纬度检索...我们尝试了双向LSTM+CRF,并在实际应用中做了些改动:由于在CRF阶段已经积累了一批人工特征,实验发现把这些特征加上效果更好。加了人工特征的双向LSTM+CRF是酒店搜索NER问题的主模型。
语义搜索 旨在通过自然语言处理技术,理解用户查询的意图,提供更为精准的搜索结果。而知识图谱嵌入技术将知识图谱中的实体和关系表示为低维向量,使得计算语义相似度成为可能。...知识图谱嵌入在语义搜索中的应用流程数据准备 在语义搜索的场景中,知识图谱提供了丰富的背景信息,能够帮助系统更好地理解查询的含义。...语义搜索中的相似度计算 使用知识图谱嵌入后,可以通过计算用户查询与知识图谱实体的向量距离,得到它们之间的相似度。相似度的度量方式可以是欧氏距离、余弦相似度等。...假设图谱中有100个关系embedding_dim = 100 # 嵌入维度model = TransE(num_entities, num_relations, embedding_dim)负采样与损失函数在训练过程中...应用扩展 知识图谱嵌入在语义搜索中展现了强大的潜力,未来可广泛应用于医疗、法律、金融等领域,提升搜索系统的智能化程度。
当然这部分可以参考本人的帖子: 《centos7上elastic search安装填坑记》 https://www.jianshu.com/p/04f4d7b4a1d3 我的ES安装在http://113.209.119.170...read-timeout: 5000 --- 代码组织 我的项目代码组织如下: [项目代码组织] 各部分代码详解如下,注释都有: Entity.java package com.hansonwang99...id=5&name=中国南边好像没有叫带京字的城市了 数据插入效果如下(使用可视化插件elasticsearch-head观看): [数据插入效果] 我们来做一下搜索的测试:例如我要搜索关键字“南京”...我们在浏览器中输入: http://localhost:6325/entityController/search?...name=南京 搜索结果如下: [关键字“南京”的搜索结果] 刚才插入的5条记录中包含关键字“南京”的四条记录均被搜索出来了!
作者简介 曹城,携程搜索部门高级研发工程师,主要负责携程搜索的个性化推荐和搜索排序等工作。...一、前言 在互联网高速发展的今天,越来越复杂的特征被应用到搜索中,对于检索模型的排序,基本的业务规则排序或者人工调参的方式已经不能满足需求了,此时由于大数据的加持,机器学习、深度学习成为了一项可以选择的方式...说起机器学习和深度学习,是个很大的话题,今天我们只来一起聊聊传统机器学习中XGBoost在大搜中的排序实践。 二、XGBoost探索与实践 聊起搜索排序,那肯定离不开L2R。...四、模型工程实践 4.1 评估指标制定 在搜索业务中,考虑的有以下两种情况: 看重用户搜索的成功率,即有没有点击; 看重页面第一屏的曝光点击率; 在文章开头提到的L2R的三种分类中,我们在XGBoost...通过多次的摸索发现,特征没有选取好,或者数据覆盖不全,标注没做好,导致后续模型不论怎么调优,都无法达到预定的效果; 选定目标后,可以先尝试一些优秀的开源工具、优秀的数据分析工具。
在这篇文章中,我将介绍一些我们的工作,即使用预先训练好的网络来在遥感数据的目标检测任务中避免标注大型训练数据集的大量繁琐工作。 2019年9月中旬,我参加了北欧遥感会议。...在这篇文章的其余部分,我将展示一些我们在实验室中所做的工作,这些工作是将一个在一个领域(ImageNet自然图像)训练过的网络用于在另一个领域(航拍图像)进行基于图像的搜索。...希望我能使你相信这种方法是有意义的。我并不是说ImageNet网络可以得到最好的结果,而是说在考虑可能需要的标注工作量时,使用跨域网络确实有意义。...视觉搜索以及所需的训练数据 深度学习或其他机器学习技术可用于开发识别图像中物体的鲁棒方法。对于来自飞机的航拍图像或高分辨率卫星照片,这将使不同物体类型的匹配、计数或分割成为可能。...我希望这篇文章在如何使用预训练的神经网络的物体定位方面能激发一些灵感,比如从地图中提取训练数据。我很有兴趣了解更多潜在的使用案例,所以如果你曾经需要在大图片(如地图)中寻找特定的物体,请留下评论!
当然这部分可以参考本人的帖子: 《centos7上elastic search安装填坑记》https://www.jianshu.com/p/04f4d7b4a1d3 我的ES安装在http://113.209.119.170...read-timeout: 5000 ---- 代码组织 我的项目代码组织如下: ?...数据插入效果 我们来做一下搜索的测试:例如我要搜索关键字“南京” 我们在浏览器中输入: http://localhost:6325/entityController/search?...name=南京 搜索结果如下: ? 关键字“南京”的搜索结果 刚才插入的5条记录中包含关键字“南京”的四条记录均被搜索出来了!...当然这里用的是standard分词方式,将每个中文都作为了一个term,凡是包含“南”、“京”关键字的记录都被搜索了出来,只是评分不同而已,当然还有其他的一些分词方式,此时需要其他分词插件的支持,此处暂不涉及
所以在空间设计上需要包含Transformer结构。如图1, ? 图1 每个块中的搜索空间 整个是一个块的搜索空间,左分支和右分支的搜索空间是一致的。...这种空间的设计整体上也是模仿图像领域,将搜索出的单元结构进行堆叠,但是也有人指出,这样做其实破坏了结构的多样性[6],没有能够将结构搜索的能力完全发挥出来,同时作者在搜索的时候也将每个单元结构中的块数量进行固定...重复这个过程一直到训练到了最大的训练步数。能使用这种方法是因为作者假设了生成的模型都是没有过拟合的,所以适应度是会随着训练步数增加而增加,作者也在实验中证明了这一点。...最后三行从经验上证明PDH方法是在没有过拟合的训练步数基础上实施的。 之后文中从性能上在不同任务不同参数情况下和标准的Transformer结构进行了比较,如表2中所示, ?...虽然最后得到的结构在性能上的确是优于标准的Transformer,不过在搜索的过程中还是使用了大量的计算资源——超过200块TPU,如何更加高效的搜索出优秀的模型,依然是亟待解决的问题,同时这项工作在搜索空间的设计上也是离散的
set-local-rtc 1 # 将硬件时间和本地时间设置一致, 最好在设置同步时间和时区之后执行 timedatectl list-timezones # 查看 timedatectl 支持的时区
关于KoodousFinder KoodousFinder是一款功能强大的Android应用程序安全工具,在该工具的帮助下,广大研究人员可以轻松对目标Android应用程序执行安全研究和分析任务,并寻找出目标应用程序中潜在的安全威胁和安全漏洞...账号和API密钥 在使用该工具之前,我们首选需要访问该工具的【开发者门户:https://koodous.com/settings/developers】创建一个Koodous账号并获取自己的API密钥
,因此需要在应用程序中添加Zipkin的依赖和配置。...因此,需要在应用程序中配置日志记录器,以便在日志中查看跟踪信息。...这将使您能够在日志中看到完整的跟踪信息。 示例 以下是一个简单的示例,演示了如何在Spring Boot应用程序中使用Spring Cloud Sleuth。...在hello()方法中,我们使用RestTemplate来调用world()方法,并返回hello, world。我们在方法中添加了一条日志,以便在日志中查看跟踪信息。...运行应用程序后,您应该能够在Zipkin服务器的UI中看到生成的跟踪信息。您还可以查看应用程序的日志输出,以便在控制台上查看跟踪信息。
大多数 Linux 发行版在默认配置下已经足够快了。但是,我们仍然可以借助一些额外的应用程序和方法让它们启动更快一点。其中一个可用的这种应用程序就是 Preload。...简而言之,一旦安装了 Preload,你使用较为频繁的应用程序将可能加载的更快。 在这篇详细的教程中,我们将去了解如何安装和使用 Preload,以改善应用程序在 Linux 中的启动时间。...$ sudo apt-get install preload Preload 安装完成后,重新启动你的系统。...我每天只打开狂吃内存的应用程序(比如,Firefox、Chrome、VirtualBox、Gimp 等等)一到两次,并且它们始终处于打开状态,因此,它们的二进制文件和库被预读到内存中,并始终整天在内存中...我一般很少去关闭和打开这些应用程序,因此,内存使用纯属浪费。 如果你使用的是带有 SSD 的现代系统,Preload 是绝对没用的。
领取专属 10元无门槛券
手把手带您无忧上云