导言: 本文为人脸识别算法系列专题的综述文章,人脸识别是一个被广泛研究着的热门问题,大量的研究论文层出不穷,文中我们将为大家总结近些年出现的具有代表性的人脸识别算法。 请大家关注SIGAI公众号,我们会持续解析当下主流的人脸识别算法以及业内最新的进展。 人脸识别有什么用? 下图是一个典型的人脸图像对齐过程: 人脸特征表征 第三个模块是本文重点要讲的人脸识别算法,它接受的输入是标准化的人脸图像,通过特征建模得到向量化的人脸特征,最后通过分类器判别得到识别的结果 人脸识别算法的三个阶段 人脸识别算法经历了早期算法,人工特征+分类器,深度学习3个阶段。 DeepFace[11]是CVPR2014上由Facebook提出的方法,是深度卷积神经网络在人脸识别领域的奠基之作,文中使用了3D模型来做人脸对齐任务,深度卷积神经网络针对对齐后的人脸Patch进行多类的分类学习
特征脸方法基本是将人脸识别推向真正可用的第一种方法,了解一下还是很有必要的。特征脸用到的理论基础PCA在之前的文章中已经讲过了。直接上特征脸方法的步骤: 步骤一:获取包含M张人脸图像的集合S。 那如果你想看一下某计算机学院男生平均下来都长得什么样子,用上面的方法就可以了。 ? ? 步骤三:计算每张图像和平均图像的差值Φ ,就是用S集合里的每个元素减去步骤二中的平均值。 ? 论文Eigenface for recognition里只用了7个特征脸来表明实验。 ? 步骤五:识别人脸。OK,终于到这步了,别绕晕啦,上面几步是为了对人脸进行降维找到表征人脸的合适向量的。 perfect,这就是求得的特征脸对人脸的表示了! 那如何对人脸进行识别呢,看下式: ? 其中Ω代表要判别的人脸,Ωk代表训练集内的某个人脸,两者都是通过特征脸的权重来表示的。 式子是对两者求欧式距离,当距离小于阈值时说明要判别的脸和训练集内的第k个脸是同一个人的。当遍历所有训练集都大于阈值时,根据距离值的大小又可分为是新的人脸或者不是人脸的两种情况。
基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务
前言 这是人脸识别系列的第5篇文章,前4篇文章可以在公众号的人脸识别栏里找到,这篇文章主要是解析CVPR 2014年的经典人脸识别论文DeepID1算法。 题外话 前面4篇人脸识别系列推文中我们介绍了基于传统方法的人脸识别算法,代表性的就是特征脸法。传统人脸识别存在很多弊端,如侧脸,模糊图片,光照遮挡等都会对人脸识别过程造成影响。 在基于深度学习的人脸识别技术没有出现以前,传统的人脸识别方法的性能都是很差的,难以实际应用到对安全系数要求很高的场景中。 然后基于深度学习的人脸识别方法主要分为两个大的类别,第一个是基于度量学习的方法,第二种是基于边界分类的方法。 这个算法以人脸识别的子领域人脸验证(Face Verification)为目标,算法并没有直接用二类分类CNN做人脸验证,而是通过学习一个多类(10000累,每个类大概有20个实例)人脸识别任务来学习特征
根据调整后的三维人脸形状和2D landmarks计算三维到二维的映射,进一步细化2D landmarks。基于带注释的三维人脸形状与二维人脸图像的配对训练数据集,设计了一种有效的回归学习算法。 相比之下,本文提出了基于多帧视频的深度网络自监督训练,即(i)在形状和外观上学习人脸识别模型,同时(ii)联合学习重建三维人脸。本文中的脸部模型只使用从网上收集的视频片段的语料库来学习。 2、 通过投影到blendshape下的nullspace上来实现多帧一致性丢失的显式blendshape和标识分离。 3、 一种新的基于连体网络的多帧身份一致性丢失算法。 网络结构: ? ? 然而,大多数算法都是为中小型(45°以下)的人脸设计的,缺乏在大型姿态下对齐人脸的能力高达90度。 进一步提出了一种人脸轮廓算法来合成60k+的大姿态训练样本。合成的样本能够很好地模拟人脸在大姿态下的外观,提高了先前提出的人脸对齐算法的性能。 模型结构: ? ? ? 实验结果: ? ?
前言 前面介绍了使用特征脸法进行人脸识别,这里介绍一下OpenCV人脸识别的另外两种算法,一种是FisherFace算法,一种是LBPH算法。 LDA算法可以用作降维,该算法的原理和PCA算法很相似,因此LDA算法也同样可以用在人脸识别领域。通过使用PCA算法来进行人脸识别的算法称为特征脸法,而使用LDA算法进行人脸识别的算法称为费舍尔脸法。 值得一提的是,FisherFace算法识别的错误率低于哈佛和耶鲁人脸数据库测试的特征脸法识别结果。 LBPH 算法原理 OpenCV除了提供特征脸法,FisherFace以外,还提供了另外一种经典的人脸识别算法即LBPH。 该算法基于提取图像特征的LBP算子。如果直接使用LBP编码图像用于人脸识别。其实和不提取LBP特征区别不大,因此在实际的LBP应用中,一般采用LBP编码图像的统计直方图作为特征向量进行分类识别。
code 代码地址:https://github.com/davidsandberg/facenet 这是人脸识别算法的TensorFlow实现,在论文“ FaceNet:人脸识别和聚类的统一嵌入”中进行了介绍 该项目还使用了牛津大学视觉几何学小组“深度面部识别”一文中的想法。 第一部分 image.png 光照和位姿不变性。姿态和光照是人脸识别中长期存在的问题。 该图显示了FaceNet在不同的姿势和光照组合下对相同的人脸和不同的人脸之间的输出距离。距离为0.0表示两张脸是相同的,4.0表示相反的光谱,两种不同的身份。 我们的网络由一个批处理输入层和一个深度CNN和L2 归一化组成,然后输出结果是人脸嵌入,接下来是训练中三元组损失函数。 两个主要区别是L的使用2 池,而不是最大池(m),其中指定。也就是说,不是取空间最大值,而是取L2 标准计算。池总是3×3(除了最终的平均池),并且与每个初始模块中的卷积模块并行。
本文我们接着来看看,在完成了人脸注册之后我们该如何识别出用户的人脸特征,从而通过人脸识别获取用户信息。 人脸识别的全部流程集成在官方 Demo 的 DetecterActivity 文件中。 还是来了解几个概念 人脸追踪 FT 年龄检测 Age 性别检测 Gender 其中人脸追踪 FT 与人脸检测 FD 功能基本一致(甚至代码基本都是相同的),Age 引擎用于识别年龄,Gender 引擎用于识别性别 在获得这个信息后,我们调用FR人脸识别引擎识别出特征值信息,然后使用AFR_FSDK_FacePairMatching特征值匹配方法,一一的与我们程序中原来存储的人脸特征进行匹配,取出其中匹配值最高的那组特征值 本文有可能是这次文章的最后一篇了,但我标题上写的是中,下一片文章可能会介绍下我在实际使用虹软人脸识别 SDK 中遇到的问题以及解决方法(目前还没投入到项目中使用)。
imagepath="xhs.jpg" image = cv2.imread(imagepath) gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)#转换为灰度图,降低计算强度 face_cascade = cv2.CascadeClassifier('d:\haarcascades\haarcascade_frontalface_alt.xml') # 探测人脸 # 根据训练的数据来对新图片进行识别的过程。 ,其他可以不写 scaleFactor= 1.01, #控制金字塔层数,通常范围1.01~1.5 参数越小,层数越多,结果越精确 minNeighbors = 1, #为5表示有5次重叠才认为人脸存在 minSize = (1,1),#寻找人脸的最小区域 ) # 处理人脸探测的结果 print ("{0}".format(len(faces))) for(x,y,w,h) in faces:
1.人脸识别的难点 用户配合度 相似性 易变形 2.人脸识别的评测方法 LFW数据集(Labeled Faces in the wild):该数据库工有13233幅图像,其中5749个人,1680人有两幅及以上的图像 ,4069人只有一幅图像。 该数据库采集的是自然条件下人脸图片,目的是提高自然条件下人脸识别的精度。
但在另一面,有些事件也堪称“人脸识别应用反面教材”,譬如将人脸识别用于学生课堂行为监控,以及前不久刚判决的“国内人脸识别第一案”动物园刷脸入园等。 此次“戴头盔看房”对于“人脸识别监管”而言是一个导火索,是加速立法的催化剂。 ? 天津方面,已经明确要求企事业单位、行业协会、商会等市场信用信息提供单位,禁止采集人脸、指纹、声音等生物识别信息。 相较于过往对人脸识别等个人信息的保护,此次立法的最大不同,在于“场景”的明晰。于人脸识别监管而言,此次的立法只是开始。 如果算上全球市场,这一技术的市场规模的体量之大可想而知。 市场规模的扩大,足以证明该技术的可行性和市场需求。但在另一面,我们也看到了公众对于人脸识别技术的抗拒和焦虑。 为什么会“抗拒”和“焦虑”? 以美国为例,截至目前,包括马萨诸塞州、波士顿、旧金山市、波特兰市等多个州市已经颁布明确禁令,禁止执法部门、政府机构使用人脸识别和监控技术。
3D人脸识别 3D 人脸识别的前几十年,都是采用手工设计的特征和分类或度量方法,进行人脸验证和识别。 近几年,随着深度学习方法的兴起,逐渐有一些工作采用数据为驱动,进行 3D 人脸识别模型的训练,本文简单总结了一下 3D 人脸识别方法,如下: ? 1、传统识别方法 基于点云数据的3D人脸识别 这类方法通常不考虑三维空间中的人脸特征,直接采用三维点云进行匹配。 《Deep 3D Face Identification》 该论文算是第一批把深度神经网络应用于 3D 人脸识别任务的方法,主要思想为通过 3DMM+BFM 拟合深度图成为带表情的 3D 人脸模型,从而实现深度数据扩增 总结 本文介绍了 3D 人脸技术的入门知识,包括 3D 基础知识如相机模型、3D 相机工作原理、3D 人脸数据处理等,同时也总结了 3D 人脸识别/重建的相关方法,希望抛砖引玉,并对入门 3D 人脸起到帮助
前言 从这里开始,我会不定期的更新一些人脸识别的有趣算法和小demo算法,源码也会开放出来,自己在学习的过程中希望也能帮助到公众号中对这方面感兴趣的小伙伴,无论是从源码角度,还是从原理角度,我说清楚了, 人脸识别的需要的数据集可以自己制作,也可以从网上免费下载。我这里选了人脸识别中入门级别的一个数据集ORL人脸库,不得不说,我是在CSDN下载的这个库,花了我7个金币来着。 人脸识别 OpenCV有3种人脸识别算法,Eigenfaces,Fisherfaces和Local Binary Pattern Histogram。 这几个算法都需要对图像或视频中检测到的人脸进行分析,并在识别到人脸的情况下给出人脸类别的概率。我们在实际应用中可以通过卡阈值来完成最后的识别工作。 就调用特征脸法开始拟合数据,然后人脸识别并打印到摄像头窗口上即可。
基于MATLAB的人脸识别算法的研究 作者:lee神 现如今机器视觉越来越盛行,从智能交通系统的车辆识别,车牌识别到交通标牌的识别;从智能手机的人脸识别的性别识别;如今无人驾驶汽车更是应用了大量的机器识别的是算法在里边 今天我们将从MATLAB的图像识别说起,后边将陆续讲解车牌识别,交通标牌识别等,并努力将它移植到FPGA里边做到高速实时处理。 MATLAB人脸识别的处理过程: 1. % 读入图像 2. %像素值概率的计算 5. %图像的腐蚀 6. %图像的膨胀 7. %根据填充率,去除手脚等非人脸部分 8. %根据面积比去除一些较小的非人脸部分 9. %根据肤色区域的长宽比出去一些非人脸部分 10. %圈出人脸 部分源码: clear all close all clc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%读入图像 x= imread('boy1.bmp'); xx=x; figure 概率计算转换为二值图像 ? 腐蚀膨胀 ? 经过7,8,9,10步骤人脸识别成功 ? 此代码经过大量实验基本可以实现人脸识别。 还需进一步完善。
本次课给大家分享人脸识别的算法。从这里开始,我们就先看一下人脸识别算法所面临的挑战吧。 image.png ●人脸验证( Face Identifcation)。就是检测A、B是否属于同一个人。 只需要计算向量之间的距离,设定合适的报警阈值( threshold )即可。 ●人脸识别( Face Recognition)。这个应用是最多的,给定一-张图片,检测数据库中与之最相似的人脸。 ●人脸聚类( Face Clustering) 。在数据库中对人脸进行聚类,直接用K-Means即可。 看一下之前提出的人脸是被算法deepface。 算法模型的结构如下:主要是由一个batch输入层和一个深度卷积神经网络组成,这个深度卷积神经网路指的是用于提取特征的Googlenet,然后进行L2归一化,然后得到的是一个嵌入的人脸特征,最后欧式距离计算人脸特征之间的差异 image.png 在模型算法训练好之后,实际当中,算法是怎么进行对比的呢? 其实是这样的,输入一张人脸的图片,同样是经过算法进行特征提取,使用得到的特征向量进行计算欧式距离,判断是不是同一人。
1061700625/OpenMV_Face_Recognition ''' >> author: SXF >> email: songxf1024@163.com >> description: 用LBP特征进行人脸识别 ,可进行人脸注册、人脸检测与人脸识别 Pin7高电平一次,触发人脸注册;默认低电平 UART1(Pin1)输出调试信息 UART3(Pin4)输出识别结果,当识别成功后,返回“Find It = 0: debug(res) return 1 def match(d0): # 人脸识别 dir_lists = os.listdir( ,但由于SD卡内无文件,无法匹配人脸 ? 按下F1按键,进入人脸注册模式,连续拍5张照存入SD卡(拍摄时绿灯快闪50ms,拍摄完绿灯闪1000ms) ? 再识别,可完成人脸识别(红灯闪1000ms)。
发展历史 人脸识别系统的研究始于20世纪60年代,80年代后随着计算机技术和光学成像技术的发展得到提高,而真正进入初级的应用阶段则在90年后期,并且以美国、德国和日本的技术实现为主;人脸识别系统成功的关键在于是否拥有尖端的核心算法 识别算法 一般来说,人脸识别系统包括图像摄取、人脸定位、图像预处理、以及人脸识别(身份确认或者身份查找)。 人脸识别算法分类 基于人脸特征点的识别算法(Feature-based recognition algorithms)。 人脸识别需要积累采集到的大量人脸图像相关的数据,用来验证算法,不断提高识别准确性,这些数据诸如A Neural Network Face Recognition Assignment(神经网络人脸识别数据 )、orl人脸数据库、麻省理工学院生物和计算学习中心人脸识别数据库、埃塞克斯大学计算机与电子工程学院人脸识别数据等。
该系统主要分为: 1.数据库:500万张图片和2000个人,而且删除了LFW中特有的人,其分布如下(网上搜集的图片有一个长尾效应:就是随着图片数量的增加不利于网络性能) ?
目录 1 读取图片 2 将图片灰度转换 3 修改图片尺寸 4 绘制矩形_圆 5 人脸检测 6 检测多张人脸 7 检测视频中的人脸 8 训练数据并人脸识别 8.1 训练数据 8.2 人脸识别 1 读取图片 thickness=2) # 显示图片 cv.imshow('result', img) # 加载图片 img = cv.imread('E:/girls.jpeg') # 调用人脸检测方法 8 训练数据并人脸识别 8.1 训练数据 import os import cv2 import sys from PIL import Image import numpy as np def getImageAndLabels face.LBPHFaceRecognizer_create() recognizer.train(faces,np.array(ids)) # 保存文件 recognizer.write('trainer.yml') 8.2 人脸识别 (gray) for x, y, w, h in faces: cv2.rectangle(reSize, (x, y), (x+w, y+h), (0, 255, 0), 2) # 人脸识别
腾讯云神图·人脸识别基于腾讯优图世界领先的面部分析技术,提供包括人脸检测与分析、五官定位、人脸搜索、人脸比对、人脸验证、人脸查重、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。
扫码关注云+社区
领取腾讯云代金券