首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

CVPR2020——D3VO论文阅读

我们提出的D3VO单目视觉里程计框架从三个层面上利用了深度学习网络,分别是:利用深度学习的深度估计,利用深度学习的位姿估计,以及利用深度学习的不确定度估计。首先我们提出了一个在双目视频上训练得到的自监督单目深度估计网络。特别的,它利用预测亮度变换参数,将训练图像对对齐到相似的亮度条件上。另外,我们建模了输入图像像素的亮度不确定性,从而进一步提高深度估计的准确率,并为之后的直接法视觉里程计提供一个关于光照残差的可学习加权函数。评估结果显示,我们提出的网络超过了当前的sota自监督深度估计网络。D3VO将预测深度,位姿以及不确定度紧密结合到一个直接视觉里程计方法中,来同时提升前端追踪以及后端非线性优化性能。我们在KITTI以及EuRoC MAV数据集上评估了D3VO单目视觉里程计的性能。结果显示,D3VO大大超越了传统的sota视觉里程计方法。同时,它也在KITTI数据集上取得了可以和sota的stereo/LiDAR里程计可比较的结果,以及在EuRoC MAV数据集上和sota的VIO可比较的结果。

08

数字视频基础知识---颜色空间

在显示器发明之后,从黑白显示器发展到彩色显示器,人们开始使用发出不同颜色的光的荧光粉(CRT,等离子体显示器),或者不同颜色的滤色片(LCD),或者不同颜色的半导体发光器件(OLED和LED大型全彩显示牌)来形成色彩,无一例外的选择了Red,Green,Blue这3种颜色的发光体作为基本的发光单元。通过控制他们发光强度,组合出了人眼睛能够感受到的大多数的自然色彩。 不过这里面的YUV TO RGB的算法,效率实在是低,因为里面有了浮点运算,解一帧176*144的图像大概需要400ms左右,这是无法忍受的,如果消除浮点运算,只需要10ms左右,效率的提升真是无法想象.所以大家还是避免在手机上面进行浮点运算.

01

光流估计——从传统方法到深度学习

近年来,深度学习技术,作为一把利剑,广泛地应用于计算机视觉等人工智能领域。如今时常见诸报端的“人工智能时代”,从技术角度看,是“深度学习时代”。光流估计是计算机视觉研究中的一个重要方向,然而,因为其不容易在应用中“显式”地呈现,而未被大众熟知。随着计算机视觉学界从图像理解转向视频理解,互联网用户从发布图片朋友圈转向发布短视频,人们对视频的研究和应用的关注不断增强。光流估计作为视频理解的隐形战士,等着我们去寻找其踪迹。本文首先介绍了什么是视频光流估计;再介绍光流估计的算法原理,包括最为经典的Lucas-Kanade算法和深度学习时代光流估计算法代表FlowNet/FlowNet2;最后,介绍了视频光流估计的若干应用。希望对光流估计的算法和应用有个较为全面的介绍。

03

数字视频基础知识

一、光和颜色 1 光和颜色 可见光是波长在380 nm~780 nm 之间的电磁波,我们看到的大多数光不是 一种波长的光,而是由许多不同波长的光组合成的。如果光源由单波长组成,就 称为单色光源。该光源具有能量,也称强度。实际中,只有极少数光源是单色的, 大多数光源是由不同波长组成,每个波长的光具有自身的强度。这称为光源的光 谱分析。 颜色是视觉系统对可见光的感知结果。研究表明,人的视网膜有对红、绿、 蓝颜色敏感程度不同的三种锥体细胞。红、绿和蓝三种锥体细胞对不同频率的光 的感知程度不同,对不同亮度的感知程度也不同。 自然界中的任何一种颜色都可以由R,G,B 这3 种颜色值之和来确定,以这 三种颜色为基色构成一个RGB 颜色空间。

02

音视频进阶知识

亮度方程 亮度方程给出彩色光的亮度Y与三基色(R、G、B)的关系式 Y=1.0000R+4.5907G+0.06015B 在不同的彩色电视制式中,由于所选的标准白光和显像三基色不同,导致亮度方程也互有差异。 以C光为标准白光源的NTSC制彩色电视制式的亮度方程为 =0.229R+0.587G+0.114BN 以Des光为标准白光源的PAL制彩色电视制式的亮度方程式为 Y=0.222R+0.707G十0.071B 由于NTSC制彩色电视广播发展较早,大量的电视设备都是按它设计的,所以PAL制中没有采用自己的亮度方程,而是延用了NTSC的亮度方程式,使用了与NTSC制彩色电视相同的显像三基色。为了书写方便,一般应用中,略去显像三基色系数下标,并被近似地写为 Y-0.30R+0.59G+0.11B

03
领券