首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Spark-ALS 分布式实现详解

然而,在用户评分不足的情况下,上述两种方法就不是很好使了,近年来,基于模型的推荐算法ALS(交替最小二乘)在Netflix成功应用并取得显著效果提升,ALS使用机器学习算法建立用户和物品间的相互作用模型...Spark 分布式实现 上述ALS算法虽然明朗了,但是要将其实现起来并不是信手拈来那么简单,尤其是数据量较大,需要使用分布式计算来实现,就更加不是那么地容易了。...下面详细阐述Spark ML是如何完成ALS分布式实现的。为了更加直观的了解其分布式实现,下面用前面的打分矩阵作为例子,如下图所示。...总结 ALS从基本原理上来看应该是很好理解的,但是要通过分布式计算来实现它,相对而言还是较为复杂的,本文重点阐述了Spark ML库中ALS的实现,要看懂以上计算流程,请务必结合源代码理解,凭空理解上述流程可能比较困难...,在实际源码实现中,使用了很多优化技巧,例如使用在分区中的索引代替实际uid或vid,实现Int代替Long,使用数组等连续内存数据结构避免由于过多对象造成JVM GC后的内存碎片等。

4.2K40

spark mlib中机器学习算法的测试(SVM,KMeans, PIC, ALS等)

在学习spark mlib机器学习方面,为了进行算法的学习,所以对原有的算法进行了试验。...从其官网(http://spark.apache.org/docs/latest/mllib-guide.html)上进行了相关文档的介绍学习,并通过其给定的例子包中相关进行测试。...(1)SVM测试(SVMwithSGD,要知道在mahout中都不支持SVM的) (2)Kmeans算法测试  (3)  LDA算法测试 (4)PIC算法(超强的迭代聚类算法) (5)推荐系统的...ALS算法测试(利用movie lens数据) 同样的数据,用spark选出的MSE精度似乎比其它网页上介绍的0.46多的值要高。...(6) 关联挖掘(FPGrowth算法) 通过之前的mahout与spark的学习,总体上mahout用起来非常不方便,而spark开发方便,速度更高效

47620
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在 Spark 中实现单例模式的技巧

    单例模式是一种常用的设计模式,但是在集群模式下的 Spark 中使用单例模式会引发一些错误。我们用下面代码作例子,解读在 Spark 中使用单例模式遇到的问题。...在 Stackoverflow 上,有不少人也碰到这个错误,比如 问题1、问题2和问题3。 这是由什么原因导致的呢?...Spark 执行算子之前,会将算子需要东西准备好并打包(这就是闭包的概念),分发到不同的 executor,但这里不包括类。类存在 jar 包中,随着 jar 包分发到不同的 executors 中。...当不同的 executors 执行算子需要类时,直接从分发的 jar 包取得。这时候在 driver 上对类的静态变量进行改变,并不能影响 executors 中的类。...这个部分涉及到 Spark 底层原理,很难堂堂正正地解决,只能采取取巧的办法。不能再 executors 使用类,那么我们可以用对象嘛。

    2.4K50

    【容错篇】WAL在Spark Streaming中的应用【容错篇】WAL在Spark Streaming中的应用

    【容错篇】WAL在Spark Streaming中的应用 WAL 即 write ahead log(预写日志),是在 1.2 版本中就添加的特性。...WAL在 driver 端的应用 何时创建 用于写日志的对象 writeAheadLogOption: WriteAheadLog 在 StreamingContext 中的 JobScheduler...何时写BlockAdditionEvent 在揭开Spark Streaming神秘面纱② - ReceiverTracker 与数据导入 一文中,已经介绍过当 Receiver 接收到数据后会调用...比如MEMORY_ONLY只会在内存中存一份,MEMORY_AND_DISK会在内存和磁盘上各存一份等 启用 WAL:在StorageLevel指定的存储的基础上,写一份到 WAL 中。...存储一份在 WAL 上,更不容易丢数据但性能损失也比较大 关于什么时候以及如何清理存储在 WAL 中的过期的数据已在上图中说明 WAL 使用建议 关于是否要启用 WAL,要视具体的业务而定: 若可以接受一定的数据丢失

    1.2K30

    Spark 在Spark2.0中如何使用SparkSession

    最重要的是,它减少了开发人员在与 Spark 进行交互时必须了解和构造概念的数量。 在这篇文章中我们将探讨 Spark 2.0 中的 SparkSession 的功能。 1....可以实现相同的效果,而不用显式创建 SparkConf,SparkContext或 SQLContext,因为它们都被封装在 SparkSession 中。...1.2 配置Spark的运行时属性 一旦 SparkSession 被实例化,你就可以配置 Spark 的运行时配置属性。例如,在下面这段代码中,我们可以改变已经存在的运行时配置选项。...正如你所看到的,输出中的结果通过使用 DataFrame API,Spark SQL和Hive查询运行完全相同。...但是,在 Spark 2.0,SparkSession 可以通过单一统一的入口访问前面提到的所有 Spark 功能。

    4.8K61

    PageRank算法在spark上的简单实现

    在每次迭代中,对页面p,向其每个相邻页面(有直接链接的页面)发送一个值为rank(p)/numNeighbors(p)的贡献值。...最后两个步骤会重复几个循环,在此过程中,算法会逐渐收敛于每个页面的实际PageRank值。在实际操作中,收敛通常需要大约10轮迭代。 三、模拟数据 假设一个由4个页面组成的小团体:A,B,C和D。...算法从将ranksRDD的每个元素的值初始化为1.0开始,然后在每次迭代中不断更新ranks变量。...在Spark中编写PageRank的主体相当简单:首先对当前的ranksRDD和静态的linkRDD进行一次join()操作,来获取每个页面ID对应的相邻页面列表和当前的排序值,然后使用flatMap创建出...(4)在循环体中,我们在reduceByKey()后使用mapValues();因为reduceByKey()的结果已经是哈希分区的了,这样一来,下一次循环中将映射操作的结果再次与links进行连接操作时就会更加高效

    1.5K20

    HyperLogLog函数在Spark中的高级应用

    本文,我们将介绍 spark-alchemy这个开源库中的 HyperLogLog 这一个高级功能,并且探讨它是如何解决大数据中数据聚合的问题。首先,我们先讨论一下这其中面临的挑战。...中 Finalize 计算 aggregate sketch 中的 distinct count 近似值 值得注意的是,HLL sketch 是可再聚合的:在 reduce 过程合并之后的结果就是一个...交互式分析系统的一个关键要求是快速的查询响应。而这并不是很多诸如 Spark 和 BigQuery 的大数据系统的设计核心,所以很多场景下,交互式分析查询通过关系型或者 NoSQL 数据库来实现。...为了解决这个问题,在 spark-alchemy 项目里,使用了公开的 存储标准,内置支持 Postgres 兼容的数据库,以及 JavaScript。...这样的架构可以带来巨大的受益: 99+%的数据仅通过 Spark 进行管理,没有重复 在预聚合阶段,99+%的数据通过 Spark 处理 交互式查询响应时间大幅缩短,处理的数据量也大幅较少 总结 总结一下

    2.6K20

    在IDEA中编写Spark的WordCount程序

    1:spark shell仅在测试和验证我们的程序时使用的较多,在生产环境中,通常会在IDE中编制程序,然后打成jar包,然后提交到集群,最常用的是创建一个Maven项目,利用Maven来管理jar包的依赖...sortBy(_._2,false).saveAsTextFile(args(1)); //停止sc,结束该任务 sc.stop(); } } 5:使用Maven打包:首先修改pom.xml中的...等待编译完成,选择编译成功的jar包,并将该jar上传到Spark集群中的某个节点上: ?...记得,启动你的hdfs和Spark集群,然后使用spark-submit命令提交Spark应用(注意参数的顺序): 可以看下简单的几行代码,但是打成的包就将近百兆,都是封装好的啊,感觉牛人太多了。...可以在图形化页面看到多了一个Application: ?

    2K90

    Spark 在大数据中的地位 - 中级教程

    Spark最大的特点就是将计算数据、中间结果都存储在内存中,大大减少了IO开销 Spark提供了多种高层次、简洁的API,通常情况下,对于实现相同功能的应用程序,Spark的代码量要比Hadoop少2-...数据本地性是尽量将计算移到数据所在的节点上进行,即“计算向数据靠拢”,因为移动计算比移动数据所占的网络资源要少得多。而且,Spark采用了延时调度机制,可以在更大的程度上实现执行过程优化。...Spark的部署模式 Spark支持的三种典型集群部署方式,即standalone、Spark on Mesos和Spark on YARN;然后,介绍在企业中是如何具体部署和应用Spark框架的,在企业实际应用环境中...Hadoop和Spark的统一部署 一方面,由于Hadoop生态系统中的一些组件所实现的功能,目前还是无法由Spark取代的,比如,Storm可以实现毫秒级响应的流计算,但是,Spark则无法做到毫秒级响应...因此,在许多企业实际应用中,Hadoop和Spark的统一部署是一种比较现实合理的选择。

    1.1K40

    大数据 | Spark中实现基础的PageRank

    吴军博士在《数学之美》中深入浅出地介绍了由Google的佩奇与布林提出的PageRank算法,这是一种民主表决式网页排名技术。...书中提到PageRank的核心思想为: 在互联网上,如果一个网页被很多其他网页所链接,说明它受到普遍的承认和信赖,那么它的排名就高。...但问题是,如何获得X1,X2,X3,X4这些网页的权重呢?答案是权重等于这些网页自身的Rank。然而,这些网页的Rank又是通过链接它的网页的权重计算而来,于是就陷入了“鸡与蛋”的怪圈。...解决办法是为所有网页设定一个相同的Rank初始值,然后利用迭代的方式来逐步求解。 在《数学之美》第10章的延伸阅读中,有更详细的算法计算,有兴趣的同学可以自行翻阅。...由于PageRank实则是线性代数中的矩阵计算,佩奇和拉里已经证明了这个算法是收敛的。当两次迭代获得结果差异非常小,接近于0时,就可以停止迭代计算。

    1.4K80

    Spark Tips4: Kafka的Consumer Group及其在Spark Streaming中的“异动”(更新)

    topic中的每个message只能被多个group id相同的consumer instance(process或者machine)中的一个读取一次。...,某topic中的message在同一个group id的多个consumer instances件分布,也就是说,每个instance会得到一个互相之间没有重合的被获取的全部message的子集。...例如有3个实现了下面代码的同源 job(完全一样的code,不同job name)同时在线,向该topic发送100条message,这3个job会各自接收到这100条message。...在Spark中要想基于相同code的多个job在使用相同group id 读取一个topic时不重复读取,分别获得补充和的子集,需要用以下code: Map topicMap...return null; } }); createStream()使用了Kafka的high level API,在读取message的过程中将offset存储在了zookeeper中。

    1.2K160

    深入理解Spark ML:基于ALS矩阵分解的协同过滤算法与源码分析

    本文旨在深入与Spark并行计算框架结合,探索协同过滤算法原理与在Spark上的实现,来解决大数据情况下矩阵分解推荐算法时间代价过高的问题。 2....Spark MLlib中实现的基于ALS矩阵分解协同过滤算法。...Spark MLlib ALS 在接下来的实例中, 我们将加载来着MovieLens数据集, 每行包含了用户ID, 电影ID,该用户对该电影的评分以及时间戳. 3.1 训练模型 import org.apache.spark.ml.evaluation.RegressionEvaluator...ALS模型实现 基于Spark架构,我们可以将迭代算法ALS很好的并行化。本章将详细讲解Spark MLlib 中的ALS模型的实现。...我们可以查看和u1相关联的所有产品来确定需要把u1发给谁,但每次迭代都扫一遍数据很不划算,所以在spark的实现中只计算一次这个信息,然后把结果通过RDD缓存起来重复使用。

    3.6K40

    Spark机器学习实战 (十二) - 推荐系统实战

    在推荐系统项目中,讲解了推荐系统基本原理以及实现推荐系统的架构思路,有其他相关研发经验基础的同学可以结合以往的经验,实现自己的推荐系统。...spark.ml使用交替最小二乘(ALS)算法来学习这些潜在因素。 spark.ml中的实现具有以下参数: numBlocks 用户和项目将被分区为多个块的数量,以便并行化计算(默认为10)。...在许多现实世界的用例中,通常只能访问隐式反馈(例如,观看,点击,购买,喜欢,分享等)。...冷启动策略 在使用ALS模型进行预测时,通常会遇到测试数据集中的用户和/或项目,这些用户和/或项目在训练模型期间不存在。...当使用Spark的CrossValidator或TrainValidationSplit中的简单随机分割时,实际上很常见的是在评估集中遇到不在训练集中的用户和/或项目 默认情况下,当模型中不存在用户和/

    3K40

    在 Spark 数据导入中的一些实践细节

    即使 JanusGraph 在 OLAP 上面非常出色,对 OLTP 也有一定的支持,但是 GraphFrame 等也足以支撑其 OLAP 需求,更何况在 Spark 3.0 会提供 Cypher 支持的情况下...关于部署、性能测试(美团 NLP 团队性能测试、腾讯云安全团队性能测试)的部分无论是官网还是其他同学在博客中都有比较详尽的数据,本文主要从 Spark 导入出发,算是对 Nebula Graph 对 Spark...带来的问题就是在批量导入结点时相对较慢。...如果使用的是单独的 Spark 集群可能不会出现 Spark 集群有冲突包的问题,该问题主要是 sst.generator 中存在可能和 Spark 环境内的其他包产生冲突,解决方法是 shade 掉这些冲突的包...3.4 关于 PR 因为在较早的版本使用了 Spark 导入,自然也有一些不太完善的地方,这边也提出了一些拙见,对 SparkClientGenerator.scala 略作了修改。

    1.5K20

    案例:Spark基于用户的协同过滤算法

    spark.ml使用交替最小二乘(ALS) 算法来学习这些潜在因素。算法实现中spark.ml提供有以下参数: numBlocks是为了并行化计算而将用户和项目分割成的块的数量(默认为10)。...rank是模型中潜在因子的数量(默认为10)。 maxIter是要运行的最大迭代次数(默认为10)。 regParam指定ALS中的正则化参数(默认为1.0)。...在许多真实世界的使用情况中,通常只能访问隐式反馈(例如,观看,点击,购买,喜欢,分享等)。...当Spark中的使用简单随机拆分为CrossValidator或者TrainValidationSplit,它实际上是非常普遍遇到的评估集不是在训练集中的用户和/或项目。...默认情况,Spark在ALSModel.transform用户和/或项目因素不存在于模型中时分配NaN预测。

    2.4K60
    领券