首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

6个顶级Python可视化库

低级别的库,如Matplotlib,提供了广泛的灵活性,可以完成几乎任何事情。然而,API也是很复杂的。 像Altair这样的声明式库简化了数据到可视化的映射,提供了一个更直观的语法。...数据类型和视觉化 是否在处理专门的用例,如地理图或大数据集?考虑一个特定的库是否支持绘图类型或有效处理大型数据集。...尽管它没有像Matplotlib那样广泛的集合,但Seaborn可以用更少的代码使流行的绘图,如柱状图、盒状图、热图等看起来更漂亮。...你也可以使用:N 或:Q符号指定数据类型,如名义(没有任何顺序的分类数据)或定量(数值的衡量)。 查看数据转换的完整列表[6]。 链接图表 Altair提供了令人印象深刻的将多个地块连接在一起的能力。...# 启用在地图中添加更多的位置 m = m.add_child(folium.ClickForMarker(popup="Potential Location")) 在地图上点击,就在你点击的地方生成一个新的位置标记

46520
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Python】5种基本但功能非常强大的可视化类型

    数据帧由100行和5列组成。它包含datetime、categorical和numerical值。 1.折线图 折线图显示了两个变量之间的关系。其中之一通常是时间。...我们首先将数据传递给图表对象。下一个函数指定绘图类型。encode函数指定绘图中使用的列。因此,在encode函数中写入的任何内容都必须链接到数据帧。...我们已经使用颜色编码来根据“cat”列分离数据点。mark_circle函数的size参数用于调整散点图中点的大小。 3.直方图 直方图用于显示连续变量的分布。...4.箱线图 箱线图提供了变量分布的概述。它显示了值是如何通过四分位数和离群值展开的。 我们可以使用Altair的mark_boxplot函数创建一个箱线图,如下所示。...A中的值范围小于其他两个类别。框内的白线表示中值。 5.条形图 条形图可用于可视化离散变量。每个类别都用一个大小与该类别的值成比例的条表示。

    2.1K20

    6个顶级Python可视化库

    低级别的库,如Matplotlib,提供了广泛的灵活性,可以完成几乎任何事情。然而,API也是很复杂的。 像Altair这样的声明式库简化了数据到可视化的映射,提供了一个更直观的语法。...数据类型和视觉化 是否在处理专门的用例,如地理图或大数据集?考虑一个特定的库是否支持绘图类型或有效处理大型数据集。...尽管它没有像Matplotlib那样广泛的集合,但Seaborn可以用更少的代码使流行的绘图,如柱状图、盒状图、热图等看起来更漂亮。...你也可以使用:N 或:Q符号指定数据类型,如名义(没有任何顺序的分类数据)或定量(数值的衡量)。 查看数据转换的完整列表[6]。 链接图表 Altair提供了令人印象深刻的将多个地块连接在一起的能力。...# 启用在地图中添加更多的位置 m = m.add_child(folium.ClickForMarker(popup="Potential Location")) 在地图上点击,就在你点击的地方生成一个新的位置标记

    91620

    6个顶级Python可视化库!

    低级别的库,如Matplotlib,提供了广泛的灵活性,可以完成几乎任何事情。然而,API也是很复杂的。 像Altair这样的声明式库简化了数据到可视化的映射,提供了一个更直观的语法。...数据类型和视觉化 是否在处理专门的用例,如地理图或大数据集?考虑一个特定的库是否支持绘图类型或有效处理大型数据集。...尽管它没有像Matplotlib那样广泛的集合,但Seaborn可以用更少的代码使流行的绘图,如柱状图、盒状图、热图等看起来更漂亮。...你也可以使用:N 或:Q符号指定数据类型,如名义(没有任何顺序的分类数据)或定量(数值的衡量)。 查看数据转换的完整列表[6]。 链接图表 Altair提供了令人印象深刻的将多个地块连接在一起的能力。...# 启用在地图中添加更多的位置 m = m.add_child(folium.ClickForMarker(popup="Potential Location")) 在地图上点击,就在你点击的地方生成一个新的位置标记

    1.1K11

    Python中常用数据可视化库:Bokeh和Altair

    本文将重点比较Bokeh和Altair这两个常用的Python数据可视化库,探讨它们的优缺点以及在不同场景下的适用性。...Altair:虽然Altair的交互功能相对较少,但是它可以无缝地与其他交互库(如Panel)集成,实现更复杂的交互需求。...添加条形图: 使用 vbar() 方法向绘图对象添加条形图,指定了 x 值(产品名称)、条形的高度(销售量)、线条颜色、填充颜色等属性。...设置图表属性: 使用一系列属性设置函数设置图表的外观属性,如去除 x 轴的网格线、设置 y 轴起始值、设置 y 轴标签等。 显示图表: 使用 show() 函数显示绘图对象。...通过这些步骤,代码创建了一个包含销售数据的条形图,并通过悬停工具提供了额外的交互信息。

    9710

    Python数据可视化,被Altair圈粉了

    用户只需要提供数据列与编码通道之间的链接,例如x轴,y轴,颜色等,其余的绘图细节它会自动处理。 事实上,Altair能做的还有很多,大家可以去官网example gallery观赏 ?...的DataFrame格式传入; 以Data对象传入; 以指向csv或json文本的url传入; Mark:定义好数据之后,需要选择显示的图形比如条形图、折线图、面积图、散点图、直方图、地图等各种交互式图表...Encoding:编码方式定义了图片显示的各种属性,如每个图片的位置,图片轴的属性等。这部分是最重要的,记住关键的几个就行。...位置通道:定义位置相关属性: x: x轴数值 y: y轴数值 row: 按行分列图片 column: 按列分列图片 通道描述: color: 标记点颜色 opacity: 标记点的透明度 shape:...离散无序 temporal:缩写T 时间序列 分类与聚合:最大值、最小值、均值、求和等等 ?

    1.5K20

    Altair适用于气象领域的Python数据可视化库,文末送书!

    例如,使用Pandas读取Excel数据集,使用Altair加载Pandas返回值的实现代码,如下所示: import altair as alt import pandas as pd data...) 牛刀小试——弄出一个条形图 Altair 很强调变量类型的区分和组合。...这里以名义型变量+数量型变量中的一条来讲解。 如果将数量型变量映射到x 轴,将名义型变量映射到y 轴,依然将柱体作为数据的编码样式(标记样式),就可以绘制条形图。...条形图可以更好地使用长度变化比较商品销售利润的差距,如下图所示。 对照柱形图的实现代码,条形图的实现代码变化的部分如下所示。...,映射在位置通道x轴上,使用汇总函数mean()计算平均降雨量,使用折线作为编码数据的标记样式。

    2.3K71

    Python数据可视化 被Altair圈粉了!

    例如,使用Pandas读取Excel数据集,使用Altair加载Pandas返回值的实现代码,如下所示: import altair as alt import pandas as pd data =...) 牛刀小试——弄出一个条形图 Altair 很强调变量类型的区分和组合。...这里以名义型变量+数量型变量中的一条来讲解。 如果将数量型变量映射到x 轴,将名义型变量映射到y 轴,依然将柱体作为数据的编码样式(标记样式),就可以绘制条形图。...条形图可以更好地使用长度变化比较商品销售利润的差距,如下图所示。 对照柱形图的实现代码,条形图的实现代码变化的部分如下所示。...,映射在位置通道x轴上,使用汇总函数mean()计算平均降雨量,使用折线作为编码数据的标记样式。

    1.8K20

    python数据可视化第三方库有哪些_数据可视化!看看程序员大佬都推荐的几大Python库…

    大家好,又见面了,我是你们的朋友全栈君。 数据可视化是数据分析中极为重要的部分,而数据可视化图表(如条形图,散点图,折线图,地理图等)也是非常关键的一环。...除此之外,Plotly可以在没有互联网连接的情况下离线使用。 Seaborn Seaborn是基于Matplotlib的Python数据可视化库,并与NumPy和pandas数据结构紧密集成。...Ggplot也与熊猫紧密相连,因此最好将数据保留在DataFrames中。 Altair Altair是Python中的统计数据可视化库。...Altair用最少的编码创建漂亮的图表数据可视化,例如条形图,饼图,直方图,散点图,误差图,功率谱,干图等。...第一级专注于快速创建数据图,第二级控制图的基本构建块,而第三级则提供了完全自动的功能来创建没有预设默认值的图表。

    2.8K10

    被Altair圈粉了!这款Python数据可视化库真香!

    例如,使用Pandas读取Excel数据集,使用Altair加载Pandas返回值的实现代码,如下所示: import altair as altimport pandas as pd...( data ) 牛刀小试——弄出一个条形图 Altair 很强调变量类型的区分和组合。...这里以名义型变量+数量型变量中的一条来讲解。 如果将数量型变量映射到x 轴,将名义型变量映射到y 轴,依然将柱体作为数据的编码样式(标记样式),就可以绘制条形图。...条形图可以更好地使用长度变化比较商品销售利润的差距,如下图所示。 对照柱形图的实现代码,条形图的实现代码变化的部分如下所示。...,映射在位置通道x轴上,使用汇总函数mean()计算平均降雨量,使用折线作为编码数据的标记样式。

    1.6K30

    分享一个口碑炸裂的Python可视化模块,简单快速入手!!

    今天小编来和大家聊一下Python当中的altair可视化模块,并且通过调用该模块来绘制一些常见的图表,借助Altair,我们可以将更多的精力和时间放在理解数据本身以及数据的意义上面,从复杂的数据可视化过程中解脱出来...Altair被称为是统计可视化库,因为它可以通过分类汇总、数据变换、数据交互、图形复合等方式全面地认识数据、理解和分析数据,并且其安装的过程也是十分的简单,直接通过pip命令来执行,如下 pip install...chart.save("chart.json") 当然我们也能够保存成图片格式的文件,如下图所示 Altair之进阶操作 我们在上面的基础之上,进一步的衍生和拓展,例如我们想要绘制一张水平方向的条形图....html") output 同时我们也来尝试绘制一张折线图,调用的是mark_line()方法代码如下 ## 创建一组新的数据,以日期为行索引值 np.random.seed(29) value =...,不同散点的大小代表着不同的值,代码如下 chart = df_1.mark_circle(color=alt.RadialGradient("radial",[alt.GradientStop("white

    92920

    12个Python数据可视化库

    3 Plotly Plotly是一个数据可视化的在线平台,提供了一些在大多数库中没有的图表,如等高线图、树状图和3D图表。...它是一个高级的声明性图表库,提供了20多种图表类型,包含3D图表、统计图和SVG地图等。 4 pygal 与Bokeh和Plotly一样,pygal提供了可以嵌入Web浏览器的交互式视图。...6 Altair Altair是一个专为Python编写,它可以让数据科学家更多地关注数据本身和其内在的联系。...1 Matplotlib Matplotlib是Python数据可视化库的元老,尽管它已有十多年的历史,但仍然是Python社区中使用最广泛的绘图库,编写几行代码即可生成线图、直方图、功率谱密度图、条形图...由于Seaborn是在Matplotlib基础上构建的,因此用户还需要了解Matplotlib以便调整Seaborn的默认值。

    1.7K20

    好看的数据可视化图片都是用什么做的? | 数答

    之类的问题,今天Alfred就来推荐一些实用的数据可视化工具给大家,这些工具包含: 一、 最近很火的动态条形图工具 二、 各种Python数据可视化第三方库 三、其它语言的数据可视化框架 注:Tableau...一、最近很火的动态条形图工具 ?...最近类似于这种动态条形图看起来非常酷炫,在朋友圈和某音等平台非常火,以下是我总结的用于绘制动态条形图的简单易用的工具: 1.1 Flourish Flourish是一个在线数据可视化网站,可以快速地把表格数据转换为各种各样好看的图表...,并且,它提供的Bar Chart Race(动态条形图)有一套完整的参数让我们可以绘制出自己想要的动态条形图。...Altair是一个声明式的Python数据可视化库,让我们可以把更多的时间专注于数据理解。

    2.8K20

    盘点12个Python数据可视化库

    由于Seaborn是在Matplotlib基础上构建的,因此用户还需要了解Matplotlib以便调整Seaborn的默认值。...Seaborn库旨在以数据可视化为中心来挖掘与理解数据,它提供的面向数据集制图函数主要是对行列索引和数组的操作,包含对整个数据集进行内部的语义映射与统计整合,以此生成信息丰富的图表。...Plotly是一个数据可视化的在线平台,与Bokeh一样,Plotly的强项在于制作交互式视图,但它提供了一些在大多数库中没有的图表,如等高线图、树状图和3D图表。...如果用户使用较小的数据集,则输出位SVG格式的图像就可以了,但是如果用户制作的图表包含数十万个数据点,那么它们就会很难被渲染并变得反应迟钝。...Altair是一个专为Python编写,它可以让数据科学家更多地关注数据本身和其内在的联系。

    4.4K30

    再见Matplotlib!我用这款Python神器了!

    上图的程序中,在进行x轴数据的处理时,Altair选择了Miles_per_Gallon进行处理,其中的bin参数是通过创建的BinParams对象来建立,其中maxbins参数的意思是最多创建10个条形柱...3 最牛的交互功能 除了数据的可视化之外,Altair还提供了交互的功能,例如下方程序中,程序提供了让用户选择区域,并进行数量统计的功能。 ?...其动态交互的可视化功能如下所示: 上图中可以看出,通过不断的选择区域,程序会自动的帮助我们计算选择的区域中,不同类别的数量,并通过下方的横向柱状图直观的展现出来,这项功能可以更加方便的帮助我们理解不同范围下的数据分布差异...先来回顾一下108位小姐姐的数据信息: ? 然后,我们利用Altair来做一个交互式的可视化,程序如下所示: ?...5 总结 以上就是小编带给大家关于Altair的分享,Altair相比于其他的可视化神器,具有强大的交互功能,能够更加帮助使用者窥探到数据中的信息,大家也赶快安装Altair来进行交互体验吧。

    81940

    盘点12个Python数据可视化库,通吃任何领域

    由于Seaborn是在Matplotlib基础上构建的,因此用户还需要了解Matplotlib以便调整Seaborn的默认值。...Seaborn库旨在以数据可视化为中心来挖掘与理解数据,它提供的面向数据集制图函数主要是对行列索引和数组的操作,包含对整个数据集进行内部的语义映射与统计整合,以此生成信息丰富的图表。...3 Plotly Plotly是一个数据可视化的在线平台,与Bokeh一样,Plotly的强项在于制作交互式视图,但它提供了一些在大多数库中没有的图表,如等高线图、树状图和3D图表。...如果用户使用较小的数据集,则输出位SVG格式的图像就可以了,但是如果用户制作的图表包含数十万个数据点,那么它们就会很难被渲染并变得反应迟钝。...6 Altair Altair是一个专为Python编写,它可以让数据科学家更多地关注数据本身和其内在的联系。

    2.9K20

    吐血整理:24种可视化图表优缺点对比,一图看懂!

    03 条形图 表示类别之间关系(“分类数据”)的高度或长度不等的条形。常用来比较同一指标下的不同群体,如10位不同CEO的薪酬。(当条形图垂直时也称为柱状图。)...缺点:使用位置的大小来表示其他值,可能会强化或弱化这些位置中编码的值。 09 层次图 用来表示元素集合的关系和相对排名的线和点。通常用来表示某组织的结构,如家庭或公司。...缺点:行与方框的方法在显示复杂性方面受到限制;更难显示不那么正式的关系,比如人们如何在公司的层级制度之外合作。 10 直方图 基于范围内每个值的出现频率来显示分布情况的条形。...缺点:当变量“翻转”(高值是前一个棒棒糖图中的低值)时,多个棒棒糖图之间的比较可能令人困惑;值相似的多个棒棒糖图,使得评估图中的单个项变得困难。...缺点:包含太多的类别或者将多个堆积条形组合在一起,可能使你很难看到差异和变化。 22 表格 按列和行排列的信息。通常用于跨多个类别显示单个值,如季度财务业绩。

    4.4K33

    吐血整理:24种可视化图表优缺点对比,一图看懂!

    优点:在值的更改中公开详细信息,或者在广泛数据类别中公开地详细分解 缺点:流中的许多值和变化导致复杂而且交叉的视觉效果,虽然很漂亮,但可能很难解释 03 条形图 表示类别之间关系(“分类数据”)的高度或长度不等的条形...常用来表示复杂的关系,如绘制不同国家的多个人口数据块。(也被错误地称为散点图。)...通常用于描绘决策,数据如何在系统中移动,或者人们如何与系统交互,例如用户在网上购买产品的过程。(也称为决策树,它是流程图的一种类型。)...优点:如果看图者熟悉地理,可以很容易地找到值并在多个层次上对它们进行比较(即同时按国家和地区比较数据) 缺点:使用位置的大小来表示其他值,可能会强化或弱化这些位置中编码的值 09 层次图 用来表示元素集合的关系和相对排名的线和点...优点:一种记录和说明关系与复杂结构的易于理解的方法 缺点:行与方框的方法在显示复杂性方面受到限制;更难显示不那么正式的关系,比如人们如何在公司的层级制度之外合作 10 直方图 基于范围内每个值的出现频率来显示分布情况的条形

    4.9K20
    领券