那么问题来了,当我们要与非技术受众分享数据时,有哪些选择?有比Notebooks更好的选择吗?...仪表板 是时候请仪表板登场了。 仪表板是一个从数据科学世界引入的相对较新的概念,它利用了现代web的优点。从本质上讲,仪表板是用于快速浏览某些数据的简单web应用程序。...Streamlit开发人员声称这是用Python构建数据应用程序的最快方法。这听起来像是一种推销,但它可能是真的。你可以在几分钟内将任何Python脚本变成交互式仪表板。.../python/)、bokeh(https://bokeh.org) 和 altair(https://altair-viz.github.io)可以直接渲染到 javascript。...因此,下次当你想在notebook中显示一些数据时,请考虑改用仪表板。
源 / 程序君 & 小象 编 / 昱良 数据可视化的工具和程序库已经极大丰盛,当你习惯其中一种或数种时,你会干得很出色,但是如果你因此而沾沾自喜,就会错失从青铜到王者的新工具和程序库。...可以创建能在仪表板或网站中使用的交互式图表(您可以将它们保存为html文件或静态图像)。...请注意,随着数据的增加,plotly会开始卡滞。所以,只有当数据点的小于500K时,我才会使用plotly。 Cufflinks Cufflinks将Plotly直接绑定到pandas数据帧。...您还可以将绘图另存为图像或在vega编辑器中打开它以获得更多选项。Altair可能不是最好的,但绝对值得一试。...您可以使用HTML,SVG和CSS将数据变成活灵活现的图表。D3并不要求您将自己绑定到任何专有框架,因为现代浏览器拥有D3所需的一切,它还用于组合强大的可视化组件和数据驱动的DOM操作方法。
可以创建能在仪表板或网站中使用的交互式图表(您可以将它们保存为html文件或静态图像)。...请注意,随着数据的增加,plotly会开始卡滞。所以,只有当数据点的小于500K时,我才会使用plotly。 Cufflinks Cufflinks将Plotly直接绑定到pandas数据帧。...您还可以将绘图另存为图像或在vega编辑器中打开它以获得更多选项。Altair可能不是最好的,但绝对值得一试。...Altair和Vega生成的分散图和直方图 D3.js(数据驱动文档DDD) D3.js是一个JavaScript库,根据数据操作文档。您可以使用HTML,SVG和CSS将数据变成活灵活现的图表。...使用 r2d3 ,您可以将数据从R绑定到D3可视化。使用 r2d3 创建的D3可视化就像RStudio,R Markdown文档和Shiny应用程序中的R图一样工作。
数据可视化的工具和程序库已经极大丰盛,当你习惯其中一种或数种时,你会干得很出色,但是如果你因此而沾沾自喜,就会错失从青铜到王者的新工具和程序库。...可以创建能在仪表板或网站中使用的交互式图表(您可以将它们保存为html文件或静态图像)。...请注意,随着数据的增加,plotly会开始卡滞。所以,只有当数据点的小于500K时,我才会使用plotly。 ? Cufflinks Cufflinks将Plotly直接绑定到pandas数据帧。...您还可以将绘图另存为图像或在vega编辑器中打开它以获得更多选项。Altair可能不是最好的,但绝对值得一试。...Altair和Vega生成的分散图和直方图 ? D3.js(数据驱动文档DDD) D3.js是一个JavaScript库,根据数据操作文档。您可以使用HTML,SVG和CSS将数据变成活灵活现的图表。
源 / 程序君 & 小象 编 / 昱良 数据可视化的工具和程序库已经极大丰盛,当你习惯其中一种或数种时,你会干得很出色,但是如果你因此而沾沾自喜,就会错失从青铜到王者的新工具和程序库。...可以创建能在仪表板或网站中使用的交互式图表(您可以将它们保存为html文件或静态图像)。...请注意,随着数据的增加,plotly会开始卡滞。所以,只有当数据点的小于500K时,我才会使用plotly。 ? Cufflinks Cufflinks将Plotly直接绑定到pandas数据帧。...您还可以将绘图另存为图像或在vega编辑器中打开它以获得更多选项。Altair可能不是最好的,但绝对值得一试。...Altair和Vega生成的分散图和直方图 ? D3.js(数据驱动文档DDD) D3.js是一个JavaScript库,根据数据操作文档。您可以使用HTML,SVG和CSS将数据变成活灵活现的图表。
Plotly 特别擅长创建交互式的图表和仪表板,这些图表可以在网页上显示,并且用户可以与之交互,比如缩放、平移、悬停显示数据信息等。...以下是 Altair 的一些关键特点:声明式语法:Altair 使用简单而直观的 Python 语法来描述数据可视化,使创建图表变得容易。...交互式:Altair 支持交互式可视化,可以轻松添加交互式元素,例如工具提示、缩放和选择。基于 Vega-Lite:Altair 核心思想是将数据可视化视为数据集到图形的映射,而不是一个步骤序列。...强大的功能:Altair 能够以声明式的方式创建漂亮的图表,适合数据科学家、数据分析师以及任何需要可视化数据的人。...图表导出:Pygal 允许用户将图表以 SVG、PNG、Etree、Base 64 数据 URI、Browser 和 PyQuery 等多种格式下载。
Altair API不包含实际的可视化呈现代码,而是按照vega - lite规范发出JSON数据结构。...数据通过数据转换映射到使用组的视觉属性(位置、颜色、大小、形状、面板等)。 通过Altair,可以将更多的时间花在理解数据及其含义上。...在数据的可视化方面,对于逐点刷新的情况也是比较多的,如在温度采集的时候,可能需要采集到一个点就要实时显示一个点,而前面的点不能丢掉,当显示满一屏时,整个波形向左逐点推进,右侧再填充显示一个新的数据点,给人一种整幅图形是向左逐点移动的显示效果...最重要的是,Plotly Express 与 Plotly 生态系统的其他部分完全兼容:在您的 Dash 应用程序中使用它,使用 Orca 将您的数据导出为几乎任何文件格式,或使用JupyterLab...bokeh 专门针对Web浏览器的交互式、可视化Python绘图库 提供优雅简洁的多功能可视化展示,能快速创建图表、仪表板和可视化应用 可以做出像D3.js简洁漂亮的交互可视化效果,但是使用难度低于D3
翻译:疯狂的技术宅 作者:Nastassia Ovchinnikova 来源:flatlogic.com 正文共:1093 字 预计阅读时间:5分钟 本文中出现的所有日期和数字在撰写本文时都是正确的...在整个开发过程中收集的非常庞大且独特的应用、插件、组件数据库。 市场上功能最强大的模板之一。 ThemeForest 上最受欢迎的模板。 最近更新:大约一周前。...//preview.themeforest.net/item/pages-admin-dashboard-template-web-app/full_screen_preview/9694847 2、Altair.../item/altair-admin-material-design-uikit-template/full_screen_preview/12190654 3、Gene ?...5个内置仪表板:CRM、Crypto、课程、Saas、Web 分析。 最近更新:大约2个月前。
它可以构建精美的图形,从简单的绘图到带有流数据集的复杂仪表板。 使用 Bokeh,可以创建基于 JavaScript 的可视化,而无需自己编写任何 JavaScript。...pandas-profiling很多做过 Python 数据分析的同学都很熟悉 Pandas 的 describe 函数,pandas-profiling 通过其低代码接口扩展了对应的功能,将信息以报告的形式呈现...TableauTableau 是用于数据分析和商业智能的领先数据可视化工具。 Gartner 的魔力象限将 Tableau 列为分析和商业智能领域的领导者。...Tableau 是一种工具,它正在改变我们使用数据解决问题的方式——使人们和组织能够充分利用他们的数据。下图所示为使用 Tableau 生成的报告。大家前往B站观看 ? 1小时速学视频教程。...Altair Notebook Examples: https://github.com/altair-viz/altair_notebooks?
书接上文:当我做 hackathon 时我在做什么(1)。 前文中提到,我做的第二个项目是个可视化的项目,名字叫 deneb。deneb 是天鹅座的一等星,也是夏季大三角和北十字两个星群的端点之一。...嗯,deneb - vega - altair,聪明的你一定想到了我为什么起这样一个名字: ? 为什么是 vega-lite? 在数据可视化这块,我自己走了不少弯路。...在 3 的基础上提供数据校验和足够清晰的出错信息。...我需要定义一个 Viewer,用于将 JSON 数据放入一段 javascript 中,然后加载到 html 页面中。我参考了 altair_viewer,实现得不费吹灰之力。...的 html 片段时,IElixir 就无法正常工作了。
主要内容如下: Altair绘图三大主要步骤 Altair样例 Altair绘图三大主要步骤 在绘制可视化作品之前,我们需要导入绘图所需的数据,Altair库的数据导入格式是标准的Pandas.Dataframe...Chart Object)对象转换 在进行Altair可视化绘制时,我们要将之前读取的的数据转换成可被Altair接受的绘图对象,这时候,我们需要调用Altair库的Chart() 方法将数据转换成Altair.../user_guide/marks.html 在选择完我们的mark对象后,接下来我们要做的就是如何将数据进行映射,比如,我绘制散点图,我需要将数据中的哪一列映射到X轴,哪一列映射到Y轴呢?...比如,还是上边的例子,我们希望将b列的均值映射到Y轴上,常规操作是先对数据进行转换计算再进行 可视化绘制,这里我们可以直接通过以下代码完成数据处理-绘图操作: alt.Chart(data).mark_bar...以上内容只是简单对Altair包绘图过程进行了总结,主要都是我在使用该库进行绘图时所认为的关键步骤,可能有所缺漏,更多内容大家可参考Altair官网。
最后,使用st.map函数将DataFrame中的经纬度数据显示在地图上。...然后,它使用pandas和numpy创建了一个包含四列数据的DataFrame。接下来,它使用streamlit的map函数来将DataFrame中的数据显示在地图上。...然后,将数据存储在变量df中。 接着,代码创建了两个选择器:point_selector和interval_selector。...最后,代码使用Streamlit的altair_chart函数将图表显示在界面上,并添加了on_select参数来指定当用户进行选择操作时触发重新运行。最后一行代码将事件显示在界面上。...单击点时,选择将显示在属性 "point_selection "下,这是点选择参数的名称。同样,当您进行区间选择时,它将显示在属性 "interval_selection "下。
上图的程序中,在进行x轴数据的处理时,Altair选择了Miles_per_Gallon进行处理,其中的bin参数是通过创建的BinParams对象来建立,其中maxbins参数的意思是最多创建10个条形柱...同时,上述程序可以看出,Altair不需要其他库的支持,就可以创建出柱状图。如果大家想要按照不同的原产地,创建出不同的柱状图时,可以利用下面的程序来进行创建。 ?...4 实战操作 为了更好的将Altair与我们的实际相结合,这里我运用之前发表文章中的抓取到的《青春有你》中,108位小姐姐的信息,来看一下如何运用Altair来做一个直观的可视化。 ?...先来回顾一下108位小姐姐的数据信息: ? 然后,我们利用Altair来做一个交互式的可视化,程序如下所示: ?...5 总结 以上就是小编带给大家关于Altair的分享,Altair相比于其他的可视化神器,具有强大的交互功能,能够更加帮助使用者窥探到数据中的信息,大家也赶快安装Altair来进行交互体验吧。
数据可视化对于通过将数据转换为视觉效果来揭示数据中隐藏的趋势和模式非常重要。...在本文中,我们将 Seaborn 与 Altair 进行比较。...我们将 DataFrame 作为数据传递,上述两个变量为 x 和 y,而 'origin' 作为图例颜色。...从语法的角度来看,这些库需要数据源的输入 x、y 来绘制。两个库的输出看起来还挺不错的。 接下来尝试更多的图并进行比较。 直方图 在这组可视化中,我们将绘制基本的直方图。...当图表的一个区域中有太多样本/点并且我们想要可视化它们的细节以更好地理解基础数据时,这很有用。 Altair 其他要点 饼图和甜甜圈图 可惜的是,Altair 不支持饼图。
本文将重点比较Bokeh和Altair这两个常用的Python数据可视化库,探讨它们的优缺点以及在不同场景下的适用性。...Altair 示例: import altair as alt from vega_datasets import data # 加载数据集 iris = data.iris() # 创建散点图...将数据转换为 Pandas DataFrame: 使用 pd.DataFrame() 函数将销售数据转换为 DataFrame。...创建 ColumnDataSource: 使用 ColumnDataSource 类将 DataFrame 转换为 Bokeh 可用的数据源。...添加悬停工具: 使用 add_tools() 方法向绘图对象添加悬停工具,指定了悬停时显示的信息,包括产品名称、销售量和收入。
Altair 符合我们人类可视化数据的方式和习惯,Altair 只需要三个主要的参数: Mark. 数据在图形中的表达形式。点、线、柱状还是圆圈? Channels....基于以上三个参数,Altair 将会选择合理的默认值来显示我们的数据。 Altair 最让人着迷的地方是,它能够合理的选择颜色。...让我们来看一个具体的例子,如下所示,我们组织了6个国家和它们所对应的人口数据,除此之外,还有相应的收入数据: import pandas as pdimport altair as alt...问题的根源在于,我们将 country_id 定义为量化变量,而实际上,它应该是一个类别变量,修改代码如下: # We changed color='country_id:Q' to color='country_id...如果想添加数据提示的功能(tooltip,鼠标悬停在数据上时,会显示该数据的详细信息),只需要增加一行代码: categorical_chart = alt.Chart(data).mark_circle
青铜 创建一个简单的散点图: import altair as alt import pandas as pd # 创建示例数据 data = pd.DataFrame({'x': [1, 2, 3,...data 作为参数 .mark_point() 方法将图表的标记类型设置为点状,表示我们要创建一个散点图 .encode() 方法来定义数据的映射关系,将x轴映射到数据中的x列,将y轴映射到数据中的y...点的大小,代表不同的 size 列的值 tooltip 参数,使得当鼠标停在泡泡上面时,会出现提示信息 王者 接下来才是 altair 的核心,还是前面的泡泡图,不过可以缩放平移交互: import altair...编码省略... ).transform_filter( brush ).properties( # 属性省略... ).interactive() 使用了 transform_filter() 方法将区域选择器应用于数据...这样当我们在散点图中选择区域时,下方的柱状图会根据所选择的区域显示相应的数据。
当可视化一个DataFrame时,选择使用哪个可视化库确实是一个头疼的事情。 这篇文章云朵君将和大家一起学习每个库的优点和缺点。到最后,对它们的不同特点有更好的了解,在合适的时候更容易选择合适的库。...将通过专注于几个具体的属性来评价一个可视化工具的优缺点: 互动性 你想要交互式可视化吗?像Altair、Bokeh和Plotly这样的库允许你创建交互式图表,用户可以探索和互动。...易于数据转换 Altair使其在创建图表时毫不费力地进行数据转换。...你也可以使用:N 或:Q符号指定数据类型,如名义(没有任何顺序的分类数据)或定量(数值的衡量)。 查看数据转换的完整列表[6]。 链接图表 Altair提供了令人印象深刻的将多个地块连接在一起的能力。...Altair建议在处理超过5000个样本的数据集时,在可视化之前对数据进行汇总。处理更大的数据集可能需要额外的步骤来管理数据大小和复杂性。 经验之谈:Altair 是创建复杂统计图表的绝佳选择。
领取专属 10元无门槛券
手把手带您无忧上云