展开

关键词

Bidirectional RNN (BRNN)

Bidirectional RNN (BRNN) Prerequisite: Gated Recurrent Unit(GRU) Long Short term memory unit(LSTM) Bidirectional RNN (BRNN) ?

69120

BERT-Bidirectional Encoder Representations from Transformers

BERT, or Bidirectional Encoder Representations from Transformers BERT是google最新提出的NLP预训练方法,在大型文本语料库

20720
  • 广告
    关闭

    腾讯云618采购季来袭!

    一键领取预热专享618元代金券,2核2G云服务器爆品秒杀低至18元!云产品首单低0.8折起,企业用户购买域名1元起…

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何应用 BERT :Bidirectional Encoder Representations from Transformers

    上一篇文章介绍了 Google 最新的BERT (Bidirectional Encoder Representations from Transformers) ,这个模型在 11 个 NLP 任务上刷新了纪录

    74720

    基于Bidirectional AttentionFlow的机器阅读理解实践

    继上次复现了r-net的方案之后,现将之前复现过的Bidirectional AttentionFlow (经典的阅读理解模型)也进行记录一下。

    6420

    End to End Sequence Labeling via Bidirectional LSTM-CNNs-CRF论文摘要简介神经网络结构训练总结

    77340

    收藏 | Tensorflow实现的深度NLP模型集锦(附资源)

    Bidirectional Seq2Seq-manual 4. Bidirectional Seq2Seq-API Greedy 5. Bidirectional Seq2Seq-manual 4. Bidirectional Seq2Seq-API Greedy 5. Bidirectional RNN + Bahdanau Attention + CRF 2. Bidirectional RNN + Luong Attention + CRF 3. Bidirectional RNN + CRF 4. Char Ngrams + Bidirectional RNN + Bahdanau Attention + CRF 5. Bidirectional RNN + Greedy CTC 3. Bidirectional RNN + Beam CTC 4.

    42340

    使用注意力机制建模 - 标准化日期格式

    模型组件 from keras.layers import RepeatVector, LSTM, Concatenate, \ Dense, Activation, Dot, Input, Bidirectional ,),name='s0') c0 = Input(shape=(n_s,),name='c0') s = s0 c = c0 outputs = [] h = Bidirectional (Bidirectional) (None, 30, 64) 17920 input_first[0][0] _______________ __________________________________ concatenate (Concatenate) (None, 30, 128) 0 bidirectional attention_weights[0][0] bidirectional

    17310

    gRPC本质的探究与实践

    ClientSide (stream Request) returns (Reply); rpc ServerSide (Request) returns (stream Reply); rpc Bidirectional Received: 0-lanoitceridiB Bidirectional Received: 1-lanoitceridiB Bidirectional Received: 2-lanoitceridiB Bidirectional Received: 3-lanoitceridiB Bidirectional Received: 4-lanoitceridiB Bidirectional Received : 5-lanoitceridiB Bidirectional Received: 6-lanoitceridiB Bidirectional Received: 7-lanoitceridiB Bidirectional Received: 8-lanoitceridiB Bidirectional Received: 9-lanoitceridiB ----------------- WithOutSDK ---

    7410

    双向 LSTM

    0.84762691 0.29165514 累加值超过设定好的阈值时可标记为 1,否则为 0,例如阈值为 2.5,则上述输入的结果为: 0 0 0 1 1 1 1 1 1 1 和单向 LSTM 的区别是用到 Bidirectional : model.add(Bidirectional(LSTM(20, return_sequences=True), input_shape=(n_timesteps, 1))) from random LSTM from keras.layers import Dense from keras.layers import TimeDistributed from keras.layers import Bidirectional return X, y # define problem properties n_timesteps = 10 # define LSTM model = Sequential() model.add(Bidirectional maxwell.ict.griffith.edu.au/spl/publications/papers/ieeesp97_schuster.pdf http://machinelearningmastery.com/develop-bidirectional-lstm-sequence-classification-python-keras

    2.7K60

    史上最全!深度学习预测股市模型汇总(附代码)

    、LSTM Recurrent Neural Network 2、ncoder-Decoder Feed-forward + LSTM Recurrent Neural Network 3、LSTM Bidirectional 5、GRU Recurrent Neural Network 6、Encoder-Decoder Feed-forward + GRU Recurrent Neural Network 7、GRU Bidirectional Recurrent Neural Network 10、Encoder-Decoder Feed-forward + Vanilla Recurrent Neural Network 11、Vanilla Bidirectional Network 15、LSTM Sequence-to-Sequence with Attention Recurrent Neural Network 16、LSTM Sequence-to-Sequence Bidirectional Recurrent Neural Network 17、LSTM Sequence-to-Sequence with Attention Bidirectional Recurrent Neural

    5.2K266

    生成对话的主题与个性化——【IJCAI 2018】《Assigning PersonalityProfile to a Chatting Machine》

    本文为对话系统提供了配置文件的信息,以便对话系统可以一致地回答个性化问题: Profile Detector 这个模块有两个作用: 要不要利用profile信息进行回复,即决定走 Forward Decoder 还是 走 Bidirectional 如果post是“how old are you”,即和配置相关,那么P(z=1∣X)≈1: 若走Bidirectional Decoder,决定选择哪个profile值来用于生成: Bidirectional

    9230

    谷歌发表的史上最强NLP模型BERT的官方代码和预训练模型可以下载了

    TensorFlow code and pre-trained models for BERT https://arxiv.org/abs/1810.04805 BERT Introduction BERT, or Bidirectional BERT outperforms previous methods because it is the first unsupervised, deeply bidirectional system for either be context-free or contextual, and contextual representations can further be unidirectional or bidirectional context — I made a ... deposit — starting from the very bottom of a deep neural network, so it is deeply bidirectional approach for this: We mask out 15% of the words in the input, run the entire sequence through a deep bidirectional

    2.6K11

    Github项目推荐 | awesome-bert:BERT相关资源大列表

    from=wx 论文: arXiv:1810.04805, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Understanding dreamgonfly/BERT-pytorch, PyTorch implementation of BERT in "BERT: Pre-training of Deep Bidirectional extraction and prediction soskek/bert-chainer, Chainer implementation of "BERT: Pre-training of Deep Bidirectional guotong1988/BERT-chinese, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding customized features, [20 stars] yuanxiaosc/BERT_Paper_Chinese_Translation, BERT: Pre-training of Deep Bidirectional

    1.4K31

    keras 解决加载lstm+crf模型出错的问题

    Sequential from keras.layers import Embedding from keras.layers import LSTM from keras.layers import Bidirectional model.add(Embedding(VOCAB_SIZE, output_dim=EMBEDDING_OUT_DIM, input_length=TIME_STAMPS)) model.add(Bidirectional (LSTM(HIDDEN_UNITS, return_sequences=True))) model.add(Dropout(DROPOUT_RATE)) model.add(Bidirectional

    54030

    深度学习——RNN(2)双向RNN深度RNN几种变种

    前言:前面介绍了LSTM,下面介绍LSTM的几种变种 双向RNN Bidirectional RNN(双向RNN)假设当前t的输出不仅仅和之前的序列有关,并且 还与之后的序列有关,例如:预测一个语句中缺失的词语那么需要根据上下文进 行预测;Bidirectional RNN是一个相对简单的RNNs,由两个RNNs上下叠加在 一起组成。 ] output_bw = outputs[1][:, -1, :] output = tf.concat([output_fw, output_bw], 1) 深度RNN Deep Bidirectional RNN(深度双向RNN)类似Bidirectional RNN,区别在于每 个每一步的输入有多层网络,这样的话该网络便具有更加强大的表达能力和学习 能力,但是复杂性也提高了,同时需要训练更多的数据。

    9.3K30

    BERT相关论文、文章和代码资源汇总

    1、Google官方: 1) BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 一切始于10 BERT-tensorflow: https://github.com/guotong1988/BERT-tensorflow Tensorflow版本:BERT: Pre-training of Deep Bidirectional https://github.com/soskek/bert-chainer Chanier版本: Chainer implementation of "BERT: Pre-training of Deep Bidirectional bert_language_understanding: https://github.com/brightmart/bert_language_understanding BERT实战:Pre-training of Deep Bidirectional

    65800

    Python实战——ESIM 模型搭建(keras版)

    shape=(SentenceLen,), dtype='float32') x1 = Embedding([CONFIG])(i1) x2 = Embedding([CONFIG])(i2) x1 = Bidirectional (LSTM(300, return_sequences=True))(x1) x2 = Bidirectional(LSTM(300, return_sequences=True))(x2) 2. local Multiply()([x1, _x1])]) m2 = Concatenate()([x2, _x2, Subtract()([x2, _x2]), Multiply()([x2, _x2])]) y1 = Bidirectional (LSTM(300, return_sequences=True))(m1) y2 = Bidirectional(LSTM(300, return_sequences=True))(m2) mx1

    64330

    使聊天机器人具有个性

    一个双向解码器 Bidirectional Decoder,用于从选定的档案值出发向前和向后生成答复。 然后用 Bidirectional Decoder 以这个 value 为起点向前向后生成答复。 Bidirectional Decoder: 2. Pfr(y|x) 是根据 x 生成 y,由通常的 forward decoder 生成。 3. Pbi(y|x, {< ki, vi >}) 是根据 x 和档案生成 y,由 Bidirectional Decoder 生成: 即 y = (yb, v~, yf ) 为生成的回复,v~ 是选中的 3. position detector: 因为用于训练的问答句是从社交网站上获得的,前面识别出来的 value 可能并不会出现在答复中,这样 bidirectional decoder 就会不知道从哪个位置开始

    40880

    关于torch.nn.LSTM()的输入和输出

    Default: 0 | bidirectional: If ``True``, becomes a bidirectional LSTM. :默认是1,单层LSTM bias:是否使用bias batch_first:默认为False,如果设置为True,则表示第一个维度表示的是batch_size dropout:直接看英文吧 bidirectional torch.float32) inputs.shape hidden_size = 128 lstm = nn.LSTM(300, 128, batch_first=True, num_layers=1, bidirectional

    43630

    相关产品

    • 云服务器

      云服务器

      云端获取和启用云服务器,并实时扩展或缩减云计算资源。云服务器 支持按实际使用的资源计费,可以为您节约计算成本。 腾讯云服务器(CVM)为您提供安全可靠的弹性云计算服务。只需几分钟,您就可以在云端获取和启用云服务器,并实时扩展或缩减云计算资源。云服务器 支持按实际使用的资源计费,可以为您节约计算成本。

    相关资讯

    热门标签

    扫码关注云+社区

    领取腾讯云代金券