首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

干货:可视化项目实战经验分享,轻松玩转Bokeh(建议收藏)

人们喜欢在静态图中查看数据,但他们更喜欢的是使用数据来查看更改参数如何影响结果。...最近,受到互动图的趋势和不断学习新工具的渴望的启发,我一直在使用 Bokeh,一个 Python 库。我为我的研究项目构建的仪表板中显示了 Bokeh 交互功能的一个示例,如下: ?...例如,在直方图中,一个有价值的特征是能够选择特定航空公司进行比较,或者选择更改 bins 的宽度以更精细地检查数据。 幸运的是,这些都是可以使用 Bokeh 在现有绘图之上添加的功能。...此列表将传递给 make_dataset 函数,该函数返回一个新的列数据源。 我们通过调用 src.data.update 并从新数据源传入数据来更新 glyphs 中使用的源的数据。...除了使用更新功能显示的数据之外,还可以更改绘图的其他方面。

2.9K20

干货推荐 | 掌握这几点,轻松玩转 Bokeh 可视化 (项目实战经验分享)

人们喜欢在静态图中查看数据,但他们更喜欢的是使用数据来查看更改参数如何影响结果。...最近,受到互动图的趋势和不断学习新工具的渴望的启发,我一直在使用 Bokeh,一个 Python 库。 我为我的研究项目构建的仪表板中显示了 Bokeh 交互功能的一个示例,如下: ?...根据用户选择更新绘图 整理数据 在制作绘图之前,需要设计将要显示的数据。...此列表将传递给 make_dataset 函数,该函数返回一个新的列数据源。 我们通过调用 src.data.update 并从新数据源传入数据来更新 glyphs 中使用的源的数据。...除了使用更新功能显示的数据之外,还可以更改绘图的其他方面。

2.3K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    掌握这几点,轻松玩转 Bokeh 可视化 (项目实战经验分享)

    人们喜欢在静态图中查看数据,但他们更喜欢的是使用数据来查看更改参数如何影响结果。...最近,受到互动图的趋势和不断学习新工具的渴望的启发,我一直在使用 Bokeh,一个 Python 库。 我为我的研究项目构建的仪表板中显示了 Bokeh 交互功能的一个示例,如下: ?...根据用户选择更新绘图 整理数据 在制作绘图之前,需要设计将要显示的数据。...此列表将传递给 make_dataset 函数,该函数返回一个新的列数据源。 我们通过调用 src.data.update 并从新数据源传入数据来更新 glyphs 中使用的源的数据。...除了使用更新功能显示的数据之外,还可以更改绘图的其他方面。

    2.2K30

    Bokeh库进行实时数据可视化指南

    Bokeh简介Bokeh是一个用于创建交互式可视化的Python库,它能够生成具有高度交互性的图表和应用程序,支持在Web浏览器中显示。...显示图表:最后,将图表对象显示在Web页面或Bokeh服务器上,以便用户可以实时查看数据的变化。...随着数据的更新,图表会动态显示最新的数据变化。Bokeh的进阶应用除了基本的实时数据可视化之外,Bokeh还提供了许多高级功能,可以进一步定制和增强可视化效果。...首先,我们介绍了Bokeh库的基本概念和优势,包括其强大的交互性和对大规模数据的处理能力。接着,我们详细阐述了实现实时数据可视化的步骤,包括准备数据、设置图表、创建数据源、定时更新数据和显示图表等。...在代码示例部分,我们演示了如何使用Bokeh库创建一个简单的实时折线图,并通过定时任务定期更新数据源,实现图表的实时更新。

    49320

    使用 Bokeh 实现动态数据可视化:从基础到高级应用

    数据源:Bokeh 中的数据源是用于存储数据的对象。数据源可以是 Python 字典、Pandas DataFrame 等。工具:Bokeh 提供了许多工具,用于与绘图进行交互,如缩放、平移、选择等。...最后,我们使用 HoverTool 添加了一个悬停工具,当用户将鼠标悬停在数据点上时,会显示相应的数值和日期信息。最终,我们将绘图输出到 HTML 文件,并通过 show() 函数显示在浏览器中。...接下来,我们创建了一个滑动条和一个按钮,并定义了按钮点击事件的回调函数。在回调函数中,我们根据滑动条的值生成新的数据,并更新数据源。...数据更新当数据源中的数据发生变化时,可以通过修改数据源的数据来更新可视化图表。Bokeh 会自动检测数据的变化并更新图形元素。...数据流和实时更新对于需要实时更新的数据,Bokeh 还提供了数据流(Streaming)的功能,可以将新的数据流式传输到可视化图表中,实现实时更新的效果。

    34100

    Python中常用数据可视化库:Bokeh和Altair

    本文将重点比较Bokeh和Altair这两个常用的Python数据可视化库,探讨它们的优缺点以及在不同场景下的适用性。...Bokeh 简介 Bokeh是一个交互式可视化库,它能够创建各种类型的交互式图表,包括散点图、线图、条形图等。Bokeh提供了丰富的工具,使用户能够在图表中进行缩放、平移和选择等操作。...from bokeh.models import ColumnDataSource, HoverTool: 从 Bokeh 库中导入用于处理数据源和悬停工具的相关类。...添加悬停工具: 使用 add_tools() 方法向绘图对象添加悬停工具,指定了悬停时显示的信息,包括产品名称、销售量和收入。...显示图表: 使用 show() 函数显示绘图对象。 通过这些步骤,代码创建了一个包含销售数据的条形图,并通过悬停工具提供了额外的交互信息。

    9710

    你知道怎么用Pandas绘制带交互的可视化图表吗?

    但其实,在Pandas的0.25.0版本之后,提供了一些其他绘图后端,其中就有我们今天要演示的主角基于Bokeh!...环境准备 我们用到的是pandas-bokeh,它为Pandas、GeoPandas和Pyspark 的DataFrames提供了Bokeh绘图后端,类似于Pandas已经存在的可视化功能。...导入库后,在DataFrames和Series上就新添加了一个绘图方法plot_bokeh()。...2017年的数据),则无需对y赋值,结果会嵌套显示在一个图中: df_pie.plot_bokeh.pie( x="Partei", colormap=["blue", "red", "...直方图 在绘制直方图时,有不少参数可供选择: bins:确定用于直方图的 bin,如果 bins 是 int,则它定义给定范围内的等宽 bin 数量(默认为 10),如果 bins 是一个序列,它定义了

    3.8K30

    手把手|在Python中用Bokeh实现交互式数据可视化

    Bokeh可以像D3.js那样创建简洁漂亮的交互式可视化效果,即使是非常大型的或是流数据集也可以进行高效互动。Bokeh可以帮助所有人快速方便地创建互动式的图表、控制面板以及数据应用程序。...现在,有了Bokeh,我就可以继续使用Python,并且快速创建这些原型。...用Bokeh实现可视化 Bokeh提供了强大而灵活的功能,使其操作简单并高度定制化。...在Bokeh服务器上进行可视化绘图有多个优点: 图表有更多的受众 可对大数据集进行交互式可视化 可根据数据流自动更新图表 创建控制面板和应用程序 开始在Bokeh服务器上绘图之前,我先运行了“bokeh-server...绘图范例-2:将两种视觉元素合并在一张图中 from bokeh.plotting import figure, output_notebook, show # 输出到电脑屏幕上 output_notebook

    10.7K50

    使用 Bokeh 为你的 Python 绘图添加交互性

    Bokeh 中的绘图比其它一些绘图库要复杂一些,但付出的额外努力是有回报的。Bokeh 的设计既允许你在 Web 上创建自己的交互式绘图,又能让你详细控制交互性如何工作。...如下结果: 给条形图添加工具提示 要在条形图上添加工具提示,你只需要创建一个 HoverTool 对象并将其添加到你的绘图中。...(h) 参数定义了哪些数据会显示在工具提示上。...现在,你可以看到付出额外努力在 Bokeh 中将所有数据封装在 ColumnDataSource 等对象的原因了。作为回报,你可以相对轻松地添加交互性。...回归简单:Altair Bokeh 是四大最流行的绘图库之一,本系列将研究它们各自的特别之处。 我也在研究几个因其有趣的方法而脱颖而出的库。

    1.7K30

    使用bokeh-scala进行数据可视化(2)

    二、几种高级可视化图表        整体上与第一篇Bokeh-scala文章中介绍的方式相同,主要是完善了BokehHelper类,我已经将所有代码放在Github中(见https://github.com...这里需要特别说明的是xs和ys内部又由多个List组成,这样相当于每个List对应上图中的一种颜色。...2.4地图        有时候需要在地图中添加城市等坐标点信息,这个在Bokeh中也很容易实现,代码如下: new GMapPlot().x_range(xdr).y_range(ydr).tools...有了GMapPlot对象,就可以像之前创建其他可视化图元那样创建在地图上的可视化图元,如点、线、面等。效果如下图所示: ?        ...2.5交互式信息提示        如果在鼠标移动到某个图元的时候能够动态的提示相应的信息,这样会带来很好的客户体验,在Bokeh中实现起来也很容易,只需要添加一个HoverTool的工具即可,实现代码如下

    2.1K70

    终于有人讲明白了

    01 概述 折线图(Line)是将排列在工作表的列或行中的数据进行绘制后形成的线状图形。折线图可以显示随时间(根据常用比例设置)而变化的连续数据,非常适用于显示在相等时间间隔下数据的趋势。...在折线图中,数据是递增还是递减、增减的速率、增减的规律(周期性、螺旋性等)、峰值等特征都可以清晰地反映出来。...在折线图中,一般水平轴(x轴)用来表示时间的推移,并且间隔相同;而垂直轴(y轴)代表不同时刻的数据的大小。如图0所示。 ? ▲图0 折线图 02 实例 折线图代码示例如下所示。...这种通过图例、工具条、控件实现数据人机交互的可视化方式,正是Bokeh得以在GitHub火热的原因,建议在工作实践中予以借鉴。...第17行定义了x轴刻度的间隔以及中间刻度数,读者可以尝试将num_minor_ticks=10的显示效果与图8进行对比;第18行定义了y轴的数据显示格式。

    2.1K10

    终于有人讲明白了

    排列在工作表的列中的数据(第一列中列出x值,在相邻列中列出相应的y值和气泡大小的值)可以绘制在气泡图中。  ...在气泡地图中,x和y分别代表一个地理位置的经纬坐标。在不要求定位非常精确的情况下,气泡地图可以将数据的相对集中度完美地体现在地理背景中。  ...但是可以通过增加一些交互行为弥补:隐藏一些信息,当鼠标点击或者悬浮时显示,或者添加一个选项用于重组或者过滤分组类别。  ...▲图2 代码示例①运行结果  从代码示例①中的第6行可以看出,气泡图的绘制仍使用散点图法,稍微不同的是在该方法中定义了散点数据的尺寸(size)大小。...▲图3 代码示例②运行结果  代码示例②第92行采用models接口进行气泡绘制,并使用滑块控件进行不同年份数据的回调,拖动图中的滑动块可以动态显示不同年份的数据;鼠标悬停在气泡上可以查看是哪个国家的数据

    1.9K40

    基于Holoviews的复杂可视化布局创建与动态交互方法研究

    安装Holoviews在开始之前,确保已经安装了Holoviews和相关依赖库。可以通过以下命令安装:pip install holoviews bokeh pandas numpy2....使用选项自定义布局在创建复杂布局时,定制化布局样式和行为是非常重要的。Holoviews 提供了丰富的选项来控制图表的外观和交互性。...from bokeh.models import HoverTool# 添加交互工具hover = HoverTool(tooltips=[("X", "@x"), ("Y", "@y")])interactive_curve...动态更新可视化内容Holoviews 提供了强大的动态更新功能,使得我们可以根据用户输入或外部条件实时更新可视化内容。下面的例子展示了如何通过用户输入动态调整图表。...在Web应用中嵌入HoloviewsHoloviews不仅可以在Jupyter Notebook中使用,还可以轻松嵌入到Web应用中。

    18820

    Bokeh,一个超强交互式 Python 可视化库!

    ,由于网上关于该包较多及官方介绍也较为详细,这里就在不再过多介绍,我们直接放出几副精美的可视化作品供大家欣赏: 在 jupyter notebook 中显示 在绘制可视化作品之前需输入: output_notebook...() 即可在 jupyter notebook 中交互显示可视化结果。...HoverTool from bokeh.plotting import figure n = 500 x = 2 + 2*np.random.standard_normal(n) y = 2 +...markers plots 以上所有的可视化作品都是可以交互操作的哦,除此之外,Bokeh 还提供大量的可视化 APP 应用,具体内容,感兴趣的小伙伴可自行搜索哈~~ 总结 这一期我们分享了 Python-Bokeh...库绘制的可视化作品,体验了 Python 用于绘制交互式可视化作品放入方便性,还是那句话,适合自己的才是最好的,不要纠结所使用的工具哈,让我们一起探索数据可视化的魅力吧~~ 参考来源:https://

    1.3K10

    Python Bokeh 库进行数据可视化实用指南

    Bokeh 主要侧重于将数据源转换为 JSON 格式,然后用作 BokehJS 的输入。Bokeh的一些最佳功能是: 灵活性: Bokeh 也为复杂的用例提供简单的图表和海关图表。...from Bokeh.io import show, output_notebook 我们需要以下命令来在 jupyter notebook 中显示图表的输出。...pandas_bokeh.output_file(文件名) Hovertool 用于在我们使用鼠标指针悬停在数据上时显示值, ColumnDataSource 是 DataFrame 的 Bokeh...output_file('abc.html') 使用Bokeh库主题 Bokeh主题有一组预定义的设计,可以将它们应用到您的绘图中。Bokeh 提供了五个内置主题。...# 将结果排成一行并显示 show(row(s1, s2, s3)) 在 Bokeh 中制作仪表板布局。在这里我拍了三张图表,一张是棒棒糖图,另外两张是Bokeh的饼图。

    5.6K50

    绘图技巧 |Bokeh超强交互式Python可视化库作品分享

    ,由于网上关于该包较多及官方介绍也较为详细,这里就在不再过多介绍,我们直接放出几副精美的可视化作品供大家欣赏: 在jupyter notebook 中显示 在绘制可视化作品之前需输入: output_notebook...() 即可在jupyter notebook 中交互显示可视化结果。...import output_file, show from bokeh.models import HoverTool from bokeh.plotting import figure n = 500...size=0.5, hover_color="pink", hover_alpha=0.8) p.circle(x, y, color="white", size=1) p.add_tools(HoverTool...还提供大量的可视化APP应用,具体内容,感兴趣的小伙伴可自行搜索哈~~ 总结 这一期我们分享了Python-Bokeh库绘制的可视化作品,体验了Python用于绘制交互式可视化作品放入方便性,还是那句话

    65810

    利用 Bokeh 在 Python 中创建动态数据可视化

    本文将介绍如何使用 Bokeh 库在 Python 中创建动态数据可视化,并提供代码示例以供参考。...然后,我们创建了一个包含 x 和 y 数据的 ColumnDataSource 对象,该对象将用于在 Bokeh 图表中更新数据。...接着,我们创建了一个绘图对象 p,设置了图表的标题和轴标签,并添加了一个折线图。然后,我们定义了一个 update() 函数,该函数用于更新数据源中的数据。...最后,我们使用 curdoc() 函数添加了一个定时器,以每秒更新一次数据,并将图表显示在当前文档中。...首先,我们介绍了 Bokeh 的基本概念和优势,以及如何安装 Bokeh 库。然后,我们提供了几个代码示例,演示了如何创建简单的动态折线图,并添加了交互式控件,如按钮和滑块,以调节数据更新频率。

    17210

    利用Bokeh进行Python中交互式与实时数据可视化的探索

    然后,我们定义了一个 update 函数,该函数使用 @linear() 装饰器来逐步更新数据。source.stream 方法将新数据流添加到数据源中,并更新图表。...这些设置使得图表在视觉上更具吸引力,同时图例 (legend_label) 提供了对数据的直观解释。...每次点击,图表都会动态更新,显示新的点。Bokeh 与外部数据源的集成在实际应用中,动态可视化经常需要与外部数据源集成,比如实时传感器数据、API数据流等。...相比之下,Bokeh 提供了更丰富的交互功能和动态更新支持。...前端 JavaScript 更新数据在 static/main.js 中,我们使用 WebSocket 或 AJAX 来获取实时数据并更新 Bokeh 图表。

    16420
    领券