首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【猫狗数据集】对一张张图像进行预测(而不是测试集)

/xiximayou/p/12448300.html 保存模型并继续进行训练:https://www.cnblogs.com/xiximayou/p/12452624.html 加载保存的模型并测试:https....html 使用学习率衰减策略并边训练边测试:https://www.cnblogs.com/xiximayou/p/12468010.html 利用tensorboard可视化训练和测试过程:https...模型:https://www.cnblogs.com/xiximayou/p/12504579.html 计算数据集的平均值和方差:https://www.cnblogs.com/xiximayou/p.../12507149.html 读取数据集的第二种方式:https://www.cnblogs.com/xiximayou/p/12516735.html epoch、batchsize、step之间的关系...:") print(true_labels) print("预测的标签是:") print(output_labels) 说明:这里需要注意的地方有: 图像要调整到网络输入一致的大小,即224×224

77630

深层卷积神经网络在路面分类中的应用

从公开可用的自动驾驶数据集[6] [7]创建了一个混合数据集,包括其它来自[8]的记录的数据,以及不是专门为自动驾驶而设计的数据集的图像[7][9][10]和来自网络搜索的图像。...为了抵消这种不平衡,我们在[19]的例子中添加了来自Google image search的更多图像,而不是应用过度采样或欠采样,以进行细粒度图像分类。...B.测试和训练数据的选择 所有使用的数据集都提供帧序列,而不是独立记录帧的随机集合。因此,来自单个序列的帧之间的道路状况仅略微变化。...当将所选图像分成测试和训练集时,我们不仅分割单个序列,而且还选择来自不同序列的图像以进行测试。最终使用的测试集由每个类的300个图像组成。 剩下的图像用于训练,构建三种不同的训练集。...7 结论和未来的工作 在本文中,我们提出了一种基于CNN的路面分类方法,可以作为预测道路摩擦系数的基础。经过训练的网络模型能够区分六种类型的表面标签。

1.7K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    教程 | 教Alexa看懂手语,不说话也能控制语音助手

    虽然它们都从网络摄像头获取输入图像并根据训练数据输出预测,但在内部,每个操作都不同: 1) Pacman Webcam - 它使用卷积神经网络(CNN),来自网络摄像头的图像输入之后,经过一系列卷积层和池化层传递出去...它采用输入图像(来自网络摄像头),并通过使用相似度函数或距离度量的方法找到最接近该输入图像训练样本的标签来对其进行分类。...在彻底测试并发现这两个系统在我的测试中表现相当之后,我决定使用 Teachable Machine 作为我的基础系统,因为: 1. 在较小的数据集上,kNN 实际上可以比 CNN 运行地更快/更好。...因此,对完全由某一个人创建的数据集上训练的模型的预测能力将不会很好地迁移到另一个人的数据集上。这对我来说也不是问题,因为训练集和测试集都是我自己反复给出的手势。 3....工作原理 ? 以下是该系统工作流程的高级视图: 1. 在浏览器中进入网站后,第一步是提供训练样例。这意味着你要使用摄像头捕捉自己反复执行的每个手势。

    2.4K20

    心灵阅读:使用人工神经网络预测从EEG Readings中看到的图像类别

    我选择了由DeepGram提出的EEG readings数据集,它来自斯坦福的一个研究项目,在该项目使用线性判别分析来预测测试对象看到的图像类别。...更复杂的层和池似乎没有帮助。但不要相信我的话。我鼓励你尝试不同的架构和超参数。例如,尝试不同的激活函数,而不是纠正深度学习中常见的线性单元(ReLU),然后在我的模型中应用。...或者,尝试不同大小的密集层和卷积层过滤器,内核和跨步。 模型训练 前9个测试对象的EEG readings作为训练集,而第十个测试对象的 EEG readings作为抵抗集。...图中显示混乱的矩阵提供了更多的细节,说明CNN的预测与真实的图像类别匹配,而这一类别是holdout的测试对象所看到的。CNN对人类面部的EEG readings的分类做得很好。...进一步的工作 这篇文章已经表明,CNN是一个很好的分类EEG数据的方法。也许你能做得更好。一些建议尝试: 交叉验证 不同的层数,高参数,dropout,激活 细粒度的分类与72个图像子类别

    1.1K40

    SSD: Single Shot MultiBox Detector

    此外,SSD架构结合了来自网络中不同分辨率的多个特征映射的预测,自然地处理了不同大小的目标,提高了检测性能。总的来说,SSD与目前许多工作的想法类似。...这使得网络能够预测多个重叠先验的高置信度,而不是要求它总是选择可能的最佳先验——这是一个稍微简化的任务。...在实践中,还可以针对不同的检测任务设计自己的先验。通过结合来自许多feature map的所有位置的不同尺度和宽高比的所有先验的预测,我们得到了一组不同的预测,涵盖了不同的输入目标大小和形状。...表3为VOC2012测试集的比较,我们使用的模型与上表相同。Fast R-CNN和Faster R-CNN有更好的性能,因为他们使用额外的4952张来自VOC2007测试的图像进行训练。...与R-CNN相比,SSD的定位误差更小,这说明SSD可以更好地对目标进行定位,因为它直接学习对目标进行先验回溯,而不是使用两个解耦的步骤。

    2K10

    ​跨模态编码刺激(视觉-语言大脑编码)实现脑机接口

    使用来自图像/多模态转换器(如ViT、Visual-BERT和LXMERT)的特征作为回归模型的输入,预测不同大脑区域的fMRI激活。...每当在同一个数据集上训练和测试时,都会遵循K折(K=10)交叉验证。所有来自K-1折叠的数据样本都被用于训练,模型在左侧折叠的样本上进行测试。...训练图像属于一个子数据集,而测试图像属于另一个子数据集。因此,对于每个受试者,进行(1)3个相同子数据集的训练-测试实验和(2)6个跨子数据集的训练-测试实验。...如果参与者对物体场景执行命名任务/决策任务,而不是被动的观看任务,预计将看到更明显和集中的结果与被动观看相比,基于语言的任务中视觉区域的激活。...预训练的CNN结果显示所有层,而多模态转换器的结果只显示最后一层。 图9:Pereira数据集:2V2(上图)和Pearson相关系数(下图)使用各种模型在不同大脑区域预测和真实反应之间的关联系数。

    74720

    Object Detection in Optical Remote Sensing Images: A Survey and A New Benchmark

    与R-CNN相比,Fast R-CNN和SPPnet对整幅图像进行特征提取与感兴趣的区域(RoI)层和一个空间金字塔池(SPP)层,分别在CNN模型运行在整个图像只有一次而不是数千倍,因此他们需要更少的计算时间...Fast R‐CNN的主要观点是采用一个快速模块来生成区域建议,而不是采用缓慢的选择搜索算法。具体来说,Faster R‐CNN框架由两个模块组成。...Faster R‐CNN的核心思想是为RPN和Fast R‐CNN检测器共享相同的卷积层,直到它们自己的完全连接的层。这样,图像只需要经过CNN一次就可以生成区域提案及其对应的特征。...YOLO是一种典型的基于回归的目标检测方法。它采用一个CNN主干,在一次评估中直接从整个图像预测边界框和类概率。它的工作原理如下。给定一个输入图像,首先将其划分为S×S网格。...5、代表方法的基准测试本节的重点是在我们所提议的DIOR数据集上对一些具有代表性的基于深度学习的对象检测方法进行基准测试,以便为未来的研究工作提供对当前状态的概述。

    7K54

    学界 | 谷歌研究院发布 NIMA:能评价图像有多美,还能让图像变得更美

    在利用 CNN 做图像质量评估时,通过相关数据集(ImageNet)进行训练以实现初始化权重,并针对感知质量评估任务对注释的数据进行微调。...在谷歌所采用的方法中,NIMA 模型并不是简单地将图像划出高分或低分,也不是针对平均分做回归,而是对任意图像都做一个评分分布——在 1 到 10 的范围内,NIMA 会将这张图的得分可能性分配给这 10...NIMA 将这些来自 AVA 数据集,且标有「风景」标签的图像进行打分并排序,预测的 NIMA 得分(括号内为实际得分)如图所示。 ? 此外,NIMA 的得分也可以用于比较图像的失真程度。...下图所展示的 TID 2013 数据集的例子呈现了,在不同程度的失真情况下,图片的得分反映了图片质量。 ? 来自 TID 2013 数据集的样例。NIMA 所计算的分数如图所示。...以 MIT-Adobe FiveK 数据集的图片为例,经过带有 NIMA 的 CNN 训练后,图片原本的色调与对比度都有了更好的效果提升。 ?

    1.9K100

    深度学习检测心脏心律不齐

    在本文中,将探讨3个课程: 将数据集拆分为患者而不是样本 学习曲线可以告诉您获得更多数据 测试多种类型的深度学习模型 数据集 将使用MIH-BIH Arrythmia数据集。...注释的符号可以在链接中找到 项目定义 预测以心跳峰值为中心的每6秒窗口中,来自ECG信号的心跳是否有心律不齐。 为了简化问题,将假定QRS检测器能够自动识别每个心跳的峰值。...可以通过分割患者而不是样本来检验这个想法。 ? 并训练一个新的密集模型: ? ? 验证AUC下降了很多,这确认了之前的数据泄漏。获得的经验:对患者而不是样本的分裂!...在这里将使用一维CNN(与用于图像的2D CNN相反)。 CNN是一种特殊类型的深度学习算法,它使用一组滤波器和卷积运算符来减少参数数量。该算法激发了用于图像分类的最新技术。...局限性 由于这只是一个周末项目,因此存在一些限制: 没有优化超参数或层数 没有按照学习曲线的建议收集其他数据 没有探索心律失常患病率的文献,以查看该数据集是否可以代表一般人群(可能不是) 推荐阅读 机器学习中四种算法预测潜在的心脏病

    1.8K10

    MIT & Caltech & AWS 提出 ALDI,目标检测新突破, 超越现有方法,再次刷新 SOTA!

    一项早期的DAOD工作,PT [8],也使用了软蒸馏损失,但作者指出作者的方法解决了两个不足之处:(1)PT需要一种定制的“概率R-CNN”架构来进行蒸馏,而作者的方法具有普遍性,可以与任何两阶段检测器配合工作...作者注意到这比现有的DAOD基准数据集(CS包含3.5k图像中的32k实例,而Sim10k包含10k图像中的58k实例)要大得多。更多数据集统计信息请参见补充材料。作者将数据集公开。...为了公平复现,作者在所有AT实验中使用了作者的对齐网络实现,而不是作者自己的。 MIC[26] 作者重新实现了 Mask 图像一致性增强作为一个Detectron2转换,以提高效率。...作者只在教师的最高得分类别预测不是背景类别的情况下计算回归损失。...作者是构建在Detectron2之上,而不是内部,因此与其他DAOD代码库相比,作者的代码库最多可小13倍,同时提供更多的功能。

    18310

    使用Keras和OpenCV实时预测年龄、性别和情绪 (详细步骤+源码)

    它有一个基于 Keras 的稳定 Python 版本,可在此处获得。 对于第 3 步,我们将训练我们自己的定制模型。但是,为了减少工作量和提高准确性,您可能需要考虑迁移学习技术。...年龄/性别/情感模型训练数据集 情感模型是从CKPlus Facial Emotion 数据集训练而来的。该数据集包含来自 7 个情绪类别的 981 张图像:愤怒、蔑视、厌恶、恐惧、快乐、悲伤和惊讶。...图像预处理——CKPlus Facial Emotion 数据集 由于其图像格式(灰度)和小体积,它不是用于情感预测的最理想数据集。...优点是所有图像都被很好地裁剪和对齐,因此有利于快速原型制作。 该数据集的一个注释:对于每个情绪类别,个人面孔重复 3 次。因此,如果随机进行训练/测试拆分,则会发生目标泄漏。...由于计算资源的限制,只有来自 UTKface 数据集的 5k 图像用于年龄/性别模型训练。

    1.8K20

    一文简述如何为自己的项目选择合适的神经网络

    因此,如果你的数据不是表格数据集(例如图像、文档或时间序列)的形式,我建议至少测试你的问题的MLP。结果可用作比较的基线点,以确认其他可能看起来更适合添加值的模型。...这允许模型在数据中的变体结构中学习位置和比例,这在处理图像时很重要。 使用CNN: 图像数据 分类预测问题 回归预测问题 总而言之,CNN适合与具有空间关系的数据一起工作。...在时间序列的时间步长中存在存在关系。 虽然不是专门针对非图像数据开发的,但CNN在诸如使用文本分类进行情绪分析和相关问题中实现了最先进的结果。...RNN用于: 文字数据 语音数据 分类预测问题 回归预测问题 生成模型 递归神经网络不适用于表格数据集。也不适合图像数据输入。...也许最有趣的工作来自将不同类型的网络混合在一起成为混合的模型。 例如,思考一下,有这一样一个模型,它使用一堆层,输入端为CNN,中间为LSTM,输出端为MLP。

    71620

    End-to-end people detection in crowded scenes

    然而,在我们的例子中,不同的框是作为集成过程的一部分生成的,而不是像OverFeat中那样独立。因此,每个输出框直接对应于图像中检测到的一个对象,并且我们不需要合并或非极大值抑制等后处理。...相反,我们的模型在测试时是联合生成输出边界框,使得它能够正确地检测甚至强烈遮挡的对象。 我们的工作使用来自最近神经网络模型的工具来预测序列[11,19]。...我们分配1000张图像进行测试和验证,然后留下剩余的所有图像进行训练。训练和测试分片之间不存在时间重叠。生成的训练集包含82906个实例。测试和验证集分别包含4922和3318个人像实例。...我们与文献中关于TUD-Crossing数据集的先前工作相比较。该数据集包括来自拥挤的街道场景的图像,并且已经用于评估Tang等人[22]的遮挡特异性检测器。...这表明允许LSTM在训练期间输出从易到难的检测,而不是以一些固定的空间排序,对于性能表现是很重要的。

    1.5K60

    常用的表格检测识别方法-表格区域检测方法(上)

    这些转换的存在需要根据神经元的输入动态地适应神经元的感受野的能力。因此,作者为faster R-CNN/FPN模型配备了一个可变形的CNN,而不是传统的CNN,其神经元并不局限于一个预定义的感受野。...数据集由PDF文件组成,论文将其转换为图像,以便在系统中使用。这是必需的,因为论文的系统只适用于图像,而不是大多数其他依赖于PDF文档中可用的元信息的方法。该数据集还包含了表结构识别任务的结构信息。...训练集由1600张图像组成,其余的817张图像用于测试。论文只评估了系统的表格检测任务,这是工作的重点。...实验结果:表2比较了该方法与之前在ICDAR-2017 POD和ICDAR-2013数据集上的工作的性能。为了完成,还报告了UNLV和Mormot的结果,但这些数据集不是工作的重点。...A.ICDAR-13ICDAR-2013数据集由238张图像组成,包含156张表。实验使用数据集中的所有图像进行测试,而没有在训练中使用任何一幅图像。

    1.6K10

    入门 | 一文了解什么是语义分割及常用的语义分割方法有哪些

    来自 Stanford Background Dataset 的示例图像,该数据集的图像大致为 320 *240 像素,还包括指向每块像素所属类别的整数矩阵。...用条件随机场优化 来自 CNN 的原始标签一般都是「缺失(patchy)」图像,在图像中有一些小区域的标签可能不正确,因此无法匹配其周围的像素标签。为了解决这种不连续性,我们可以用一种平滑的形式。...通过这样的构造,Dilation10 在 Pascal VOC 2012 测试集上的平均 IOU 值达到了 75.3%。 其他训练方案 我们最近的训练方案偏离了分类器和 CRF 模型。...这些方法不是独立地优化不同模块,而是采用端到端的方法。...对抗训练 近期的另一个工作重点是使用对抗性训练获得更高阶的一致性。受生成对抗网络(GAN)的启发,Luc 等人训练了用于语义分割的标准 CNN 以及试着学习区分真实图分割和预测图分割的对抗网络。

    1.4K70

    Towards Precise Supervision of Feature Super-Resolution

    对于小的建议,感兴趣区域(RoI)池层通常提取复制的特征向量作为box预测器的输入,而box预测器最终在对小目标没有足够详细信息的情况下进行预测。...SOD-MTGAN[1]不是对整个图像进行超分辨,而是先将RoI池化,然后使用这些池化的roi训练超分辨模型。虽然他们的工作通过只关注roi来解决这两个问题,但仍然没有考虑roi的上下文信息。...大预测器对大建议进行分类和定位的置信度的计算与普通检测器相同,而小预测器对小建议执行相同的任务,这些小建议首先由SR特征生成器进行增强。...它提供了一个真实世界中的交通标志数据集,其中目标对象的大小与图像大小相比非常小(2048×2048)。数据集有6K个训练图像和3K个测试图像。...COCO 2017包含80个目标类别,115K的火车,5K的val和20K的testdev图像。我们使用训练集,而val和测试开发集用于测试。我们在补充资料中补充了val集的结果。评价措施。

    1.3K00

    Commun | 利用深度学习预测脑年龄

    在这里,本篇文章提出了一种新的脑年龄预测方法,它使用基于核磁共振成像(MRI)训练的3D CNN来预测脑年龄。输入数据是T1加权图像和来自T1加权图像的数据,即雅可比图,以及灰度和白质分割图像。...(4)正如该文章已经提到的,该文章的方法通过平均预测或通过训练数据混合器来组合来自多个CNN的预测。该文章将他们提出的方法与几种基于特征提取和机器学习的脑年龄预测方法进行了比较。...来自冰岛样本的被试被划分为这三组,如果一个被试具有多个图像,则所有图像都放在同一组中。...来自四个不同数据源的四个预测为组合预测提供了可能性。组合预测的最直接方式是使用多数投票方案(MV),例如,通过对四个CNN所做的预测求平均。...将表1B的测试集结果与表1A中的结果进行比较,可以看到,组合预测产生的测试误差低于对T1加权图像进行CNN训练所获得的测试误差。

    1.9K21

    语义分割技术综述_语义分割模型

    使用标准数据集还有一个好处就是可以使系统间的对比更加公平,实际上,许多数据集是为了与其他方法进行对比而不是给研究者测试其算法的,在对比过程中,会根据方法的实际表现得到一个公平的排序,其中不涉及任何数据随机选取的过程...分割的竞赛很有趣:他的目标是为测试集里的每幅图像的每个像素预测其所属的物体类别。...对于每个区域,使用适合的区域CNN(R-CNN)[102]版本来提取特征,其是由MCG方法中给出的边界框微调而来,而不是由选择性的搜索以及前景区域得出。...图来自[83]。 另一种方法由Zagoruyko等人[85]提出,使用快速R-CNN作为起点,使用DeepMask的物体提议而不是选择性搜索。...该方法将自己提出的三维卷积(C3D)网络应用于先前的工作[108]中,在最后添加了反卷积层以将其扩展为面向语义分割的算法。该系统将输入的视频片段分为包含16个帧的小片段,对每个片段单独进行预测。

    96640

    独家 | 面部识别技术能用来识别鲸鱼? Kaggle露脊鲸识别大赛NO.1教你实现!

    在比赛中,人们会(或应该)倾向于测试新的方法,而不是微调和清理现有的方法。因此,在一个idea被证明工作得很好之后不久,我们通常就放下它。...有了这些坐标,就可以很容易构造变换,使得原始图像变换为这两个点总是处于相同的位置(即头部校准)。由于Anil Thomas的标注,我们有了训练集的坐标。所以,我们再次训练CNN来预测量化坐标。...首先,它需要预测哪只鲸鱼在图像上(即解决原始任务),此外还需要知道鲸鱼头部的皮肤斑纹是否连续(又一次需要在人工标注的训练集进行训练,虽然这时工作量少多了,每个鲸鱼2-3张图片就够了)。...这也是为了解决仅在我们的验证集中出现的单张鲸鱼照片的问题。 预测组合 最后我们得到了一系列在验证集上得分在0.97到1.3之间的模型(实际测试成绩更好)。...相反,将JPEG文件解码为numpy数组才是最花时间的。我们做了一个快餐式的基准测试,来自数据集的111个随机原始图像总共为85Mb。

    1K70

    入门 | 一文了解什么是语义分割及常用的语义分割方法有哪些

    来自 Stanford Background Dataset 的示例图像,该数据集的图像大致为 320 *240 像素,还包括指向每块像素所属类别的整数矩阵。...用条件随机场优化 来自 CNN 的原始标签一般都是「缺失(patchy)」图像,在图像中有一些小区域的标签可能不正确,因此无法匹配其周围的像素标签。为了解决这种不连续性,我们可以用一种平滑的形式。...通过这样的构造,Dilation10 在 Pascal VOC 2012 测试集上的平均 IOU 值达到了 75.3%。 其他训练方案 我们最近的训练方案偏离了分类器和 CRF 模型。...这些方法不是独立地优化不同模块,而是采用端到端的方法。...对抗训练 近期的另一个工作重点是使用对抗性训练获得更高阶的一致性。受生成对抗网络(GAN)的启发,Luc 等人训练了用于语义分割的标准 CNN 以及试着学习区分真实图分割和预测图分割的对抗网络。

    88420
    领券