首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

线性回归 均方误差_线性回归模型中随机误差项的意义

今天看到了唐宇迪老师的机器学习课程,终于理解他是怎么推导的了。一定要一步一步看下去,别看他公式这么多,随便认真看一下就能理解的! 问题描述 我们有工资和年龄两个特征,要预测银行会贷款给我们多少钱?...拟合函数 假设: 年龄: x 1 x_1 x1​ 工资: x 2 x_2 x2​ 年龄的参数: θ 1 θ_1 θ1​ 工资的参数: θ 2 θ_2 θ2​ 那么有拟合函数: (1) 将它转化为矩阵表达形式为...误差 真实值和预测值之间通常情况下是会存在误差的,我们用ε来表示误差,对于每个样本都有: (3) 上标i表示第i个样本。...似然函数 似然函数用于参数估计,即求出什么样的参数跟我们给出的数据组合后能更好的预测真实值,有: (6) 取(6)式对数,将连乘转化为加法,这也是一般似然函数的求解方法: (7) 将(7...)式展开并化简有: (8) (8)式等式右侧的第一项为一个常量,似然函数要取最大值,因而第二项越小越好,有: (9) (9)式相当于最小二乘法的式子,即是均方误差的表达式。

95920

企业中关于 AI 和 ChatGPT 的 5 项重要学习

企业中关于 AI 和 ChatGPT 的 5 项重要学习 翻译自 5 Key Learnings about AI and ChatGPT in the Enterprise . 2023 年是人工智能在企业中取得突破的一年...可以这样说:生成式人工智能和大型语言模型已经成为全球 IT 部门中常见的词汇。你们公司的首席信息官现在更可能提到 ChatGPT 而不是 Kubernetes 。...“OpenAI 希望您将数据带到其专属于 Azure 的模型中。Cohere 希望将我们的模型带到您感觉舒适的任何环境中。”...Stanford HELM目录中 Cohere 的模型列表 OpenAI 的主要模型 然而,斯坦福还测试了“准确性”,在这些统计数据中,尺寸似乎并不重要: 斯坦福 HEML 测试 ML 模型的准确性...他说,数据智能是“在 AI 和 BI 之前的一层,它确保您可以找到、理解和信任正确的数据,以将其放入您的 AI 和 BI 中。”

10810
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Linux 内核中 Kconfig 文件的作用和添加 menuconfig 项的方法

    嵌入式开发中,需要定制或添加一些内核的功能。这里就需要配置 Kconfig 文件了。本文简单说明一下如何修改。...有很多种配置方式,这里我暂时只是给一种简单的,也就是yes和no的方式。...以前文为例,我添加了配置项在Kconfig中,这个Kconfig的位置是drivers/char/,那么我必须在这个文件夹下的Makefile中添加一行: obj-$(CONFIG_XXXX_MOTOR...) += xxxx_motor.o 其中要正确地写上目标文件的名称。...然后,专心添加你的.c和.h文件就行了。由于是二态的选项,所以你的代码要么就直接被包含在内核中,要么就压根不存在。不像三态的,还有一个“M”选项。三态配置参见参考资料吧。

    3.6K50

    「精挑细选」精选优化软件清单

    优化问题,在本例中是最小化问题,可以用以下方式表示 给定:一个函数f:一个{\displaystyle \to}\to R,从某个集合a到实数 搜索:A中的一个元素x0,使得f(x0)≤f(x)对于A中的所有...COMSOL Multiphysics -一个跨平台的有限元分析、求解和多物理仿真软件。 CPLEX -整数、线性和二次规划。...MATLAB -优化工具箱中的线性、整数、二次和非线性问题;多极大值、多极小值、非光滑优化问题;模型参数的估计与优化。 MIDACO是一种基于进化计算的单目标和多目标优化的轻量级软件工具。...MOSEK 线性,二次,圆锥和凸非线性,连续和整数优化。 NAG 线性、二次、非线性、线性或非线性函数的平方和;线性、稀疏线性、非线性、有界或无约束;局部和全局优化;连续或整数问题。...NMath 线性规划,二次规划和非线性规划。 OptimJ 基于java的建模语言。高级版包括对gu罗比,Mosek和CPLEX解决方案的支持。

    5.8K20

    干货 | cplex介绍、下载和安装以及java环境配置和API简单说明

    所以打算学习一下cplex这个商业求解器。 当然也有其他更多的选择,这里暂时以比较容易上手和性能比较好的cplex开始吧。其实,小编也早就想学习使用这个cplex了,毕竟是个好东西。...Cplex专门用于求解大规模的线性规划(LP)、二次规划(QP)、带约束的二次规划(QCQP)、二阶锥规划(SOCP)等四类基本问题,以及相应的混合整数规划(MIP)问题。...优势: 能解决一些非常困难的行业问题; 求解速度非常快; 提供超线性加速功能的优势。 在Cplex的加持下,使得matlab对于大规模问题,以及线性规划的效率,都得到飞跃的提升。...3.2 求解一个简单的模型 一个简单的线性规划问题: ?...使用 IloCplex 类新建一个 cplex 类。 2. 使用 IloNumVar 定义求解变量。 3. 使用 addMaximize 或addMinimize 定义求解目标。 4.

    5.4K30

    运筹学教学|快醒醒,你的熟人拉格朗日又来了!!

    对于一个整数规划问题,拉格朗日松弛放松模型中的部分约束。这些被松弛的约束并不是被完全去掉,而是利用拉格朗日乘子在目标函数上增加相应的惩罚项,对不满足这些约束条件的解进行惩罚。...拉格朗日松弛之所以受关注,是因为在大规模的组合优化问题中,若能在原问题中减少一些造成问题“难”的约束,则可使问题求解难度大大降低,有时甚至可以得到比线性松弛更好的上下界。 拉格朗日松弛方法基础 ?...求解拉格朗日界的次梯度方法 ? 为了方便各位读者理解,我们直接放上流程图如下 ? 其中各个参数的计算方式参照第二节中给出的公式来计算。 一个算例求解 ?...(0.0, 1, IloNumVarType.Int, "X" + i); // 初始目标函数 IloLinearNumExpr obj = cplex.linearNumExpr...void changeObj(double cmu) throws IloException { // 目标函数 mu = cmu; IloLinearNumExpr new_obj

    4.2K20

    深入理解机器学习中的:目标函数,损失函数和代价函数「建议收藏」

    :计算的是一个样本的误差 代价函数:是整个训练集上所有样本误差的平均 目标函数:代价函数 + 正则化项 实际应用: 损失函数和代价函数是同一个东西,目标函数是一个与他们相关但更广的概念,举例说明:...那是不是我们的目标就只是让loss function越小越好呢?还不是。这个时候还有一个概念叫风险函数(risk function)。...但是我们是有历史数据的,就是我们的训练集,f(X)关于训练集的平均损失称作经验风险(empirical risk),所以我们的目标就是最小化经验风险。 到这里完了吗?还没有。...这个时候就定义了一个函数J(f),这个函数专门用来度量模型的复杂度,在机器学习中也叫正则化(regularization)。常用的有L1, L2范数。...到这一步我们就可以说我们最终的优化函数是: 即最优化经验风险和结构风险,而这个函数就被称为目标函数 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/140508.

    1.5K11

    标准正态分布的分布函数服从均匀分布_二项分布和均匀分布

    大家好,又见面了,我是你们的朋友全栈君。 一个分布的随机变量可通过把服从(0,1)均匀分布的随机变量代入该分布的反函数的方法得到。标准正态分布的反函数却求不了。...所以我们就要寻找其他的办法。 由均匀分布生成标准正态分布主要有3种方法:Box–Muller算法 ,中心极限定理和Kinderman and Monahan method。...我们知道标准正太分布的反函数是求不了的,但标准正态分布经过极坐标变换后却是可以求得反函数的。...1.2.python代码: 1.3.Excel直方图: 2.中心极限定理 2.1.理论基础: 独立同分布、且数学期望和方差有限的随机变量序列的标准化和,以标准正态分布为极限 , ,...2.2.python代码: 2.3.Excel直方图: 3.Kinderman and Monahan method 这个是python中random库里生成正态分布随机变量的方法。

    54420

    基于求解器的路径规划算法实现及性能分析

    可以用来求解线性规划、二次规划、二次约束规划、混合整数规划以及网络流问题。CPLEX提供了可用于多个不同优化器,可根据问题类型选择适用的优化器选项。...;CPLEX的优势在于能用于求解非线性规划问题,能灵活设定模型约束和目标,并获得全局最优解,具备可视化功能。...而在两种开源求解器中,OR-Tools和Jsprit的表现相差不大。...对比规模大于400的算例,二者迭代中的目标值呈现类似的变化趋势: 可以看到,对于求解质量而言,在相同迭代次数下,Jsprit的求解质量始终优于OR-Tools;而从收敛性来看,Jsprit能以较少的迭代次数达到最优解...Part4总结 求解器自身性质 商用求解器CPLEX的优势在于能直接对构造的数学模型进行求解,具有很强的灵活性,可任意定义目标函数和约束条件;CPLEX不仅可用于求解线性规划问题和混合整数规划问题,还可用求解更复杂的非线性规划问题

    7.9K20

    干货 | 运筹学、数学规划、离散优化求解器大PK,总有一款适合你

    软件IBM ILOG CPLEX Optimization Studio中自带该优化引擎。...支持模型: Gurobi 可以解决的数学问题: l 线性问题(Linear problems) l 二次型目标问题(Quadratic problems) l 混合整数线性和二次型问题(Mixed...二次和锥优化求解器则会以团队已有的DSDP求解器为基础进行二次开发。...开源的求解器国际知名的约有五六个,尤其以德国的SCIP和美国的Coin-OR为线性和整数规划代表,二次规划里Sedumi,SDPT3和DSDP比较优秀。...商业求解器最有名的有四个,美国IBM的CPLEX,Gurobi,英国的Xpress,三家的线性和整数规划求解器基本上从速度和稳定性一直稳居世界前三,丹麦的MOSEK在二次规划和锥优化优势明显。

    26.2K71

    在docker容器中使用cplex-python37

    技术背景 线性规划是常见的问题求解形式,可以直接跟实际问题进行对接,包括目标函数的建模和各种约束条件的限制等,最后对参数进行各种变更,以找到满足约束条件情况下可以达到的最优解。...Cplex是一个由IBM主推的线性规划求解器,可以通过调用cplex的接口,直接对规定形式的线性规划的配置文件.lp文件进行求解。...x1 + 4 x2 + 5 x3 <= 8 Bounds 0 <= x1 <= 1 0 <= x2 <= 1 0 <= x3 <= 1 Binary x1 x2 x3 End 在这个问题中,我们的目标是优化这样的一个函数...--- Total (root+branch&cut) = 0.00 sec. (0.00 ticks) >>> lp.solution.get_objective_value() # 获取求解的目标函数值...总结概要 在这篇文章中我们介绍了如何使用docker去搭建一个cplex线性规划求解器的编程环境,制作完docker容器,我们也展示了如何写一个线性规划问题定义的文件,并使用cplex对给定一个背包问题的线性规划

    1.9K00

    在docker容器中使用cplex-python37

    技术背景 线性规划是常见的问题求解形式,可以直接跟实际问题进行对接,包括目标函数的建模和各种约束条件的限制等,最后对参数进行各种变更,以找到满足约束条件情况下可以达到的最优解。...Cplex是一个由IBM主推的线性规划求解器,可以通过调用cplex的接口,直接对规定形式的线性规划的配置文件.lp文件进行求解。...0 <= x1 <= 1 0 <= x2 <= 1 0 <= x3 <= 1 Binary x1 x2 x3 End 在这个问题中,我们的目标是优化这样的一个函数: \[max\{2x_1+3x...--- Total (root+branch&cut) = 0.00 sec. (0.00 ticks) >>> lp.solution.get_objective_value() # 获取求解的目标函数值...总结概要 在这篇文章中我们介绍了如何使用docker去搭建一个cplex线性规划求解器的编程环境,制作完docker容器,我们也展示了如何写一个线性规划问题定义的文件,并使用cplex对给定一个背包问题的线性规划

    3.1K20

    【CPLEX教程01】Cplex介绍,下载和安装Cplex

    所以打算学习一下cplex这个商业求解器。 当然也有其他更多的选择,这里暂时以比较容易上手和性能比较好的cplex开始吧。其实,小编也早就想学习使用这个cplex了,毕竟是个好东西。...Cplex是什么? ? Cplex是IBM公司开发的一款商业版的优化引擎,当然也有免费版,只不过免费版的有规模限制,不能求解规模过大的问题。...Cplex专门用于求解大规模的线性规划(LP)、二次规划(QP)、带约束的二次规划(QCQP)、二阶锥规划(SOCP)等四类基本问题,以及相应的混合整数规划(MIP)问题。...优势: 能解决一些非常困难的行业问题; 求解速度非常快; 提供超线性加速功能的优势。 在Cplex的加持下,使得matlab对于大规模问题,以及线性规划的效率,都得到飞跃的提升。...Cplex下载和安装 由于商用版太贵,现在已经能申请教育版了,功能和商用版一样。

    6.6K20

    【CPLEX教程02】配置Cplex的Java环境以及API说明

    00 前言 因为小编一般用的C++和Java比较多,而且现在开发大型算法用这类面向对象的编程语言也方便得多。基于上面的种种考虑,加上时间和精力有限,所以就暂时只做C++和Java的详细教程辣。...关于matlab和python的也许后续会补上的吧。 然后在开始之前,照例先把环境给配置好。那么就先配置java的环境吧。 01 添加环境变量 前面已经说了怎么下载和安装cplex了,如图: ?...其他的开发环境请大家自行设置哈。 新建一个工程,添加一个package,添加一个带main函数的类。代码先别写。 ?...03 求解一个简单的模型 一个简单的线性规划问题: ?...使用 IloCplex 类新建一个 cplex 类。 2. 使用 IloNumVar 定义求解变量。 3. 使用 addMaximize 或addMinimize 定义求解目标。 4.

    1.8K30

    CPLEX出现q1 is not convex?

    里面讲了一堆想必大家也懒得去看了,我来讲讲这类问题的解决方案吧~出现这个错误的原因不是编程上的问题,而是建模方式上的问题。简单来说就是目标函数或者约束上出现了非线性的数学表达式。...那么什么是线性和非线性呢?...我这里引一下百度知道上一个非常通俗易懂的解释: 两个变量之间的关系是一次函数关系的——图象是直线,这样的两个变量之间的关系就zhi是“线性关系”;如果不是一次函数关系的——图象不是直线,就是“非线性关系...比如说y=kx 就是线形的 而y=x^2就是非线形的线形的图形一般是一条直线。 “非线性”的意思就是“所得非所望”。一个线性关系中的量是成比例的:十枚橘子的价钱是一枚的十倍。...可以看到不等式右边出现了变量和变量相乘的情况,这就造成了我们刚刚说的“非线性”问题,那么这个模型放进cplex中肯定会报“not convex”的错误。

    2.5K10

    R语言中广义线性模型(GLM)中的分布和连接函数分析

    p=14874 通常,GLM的连接函数可能比分布更重要。...因此,在图的左侧,误差应该较小,并且方差函数的功效更高。...---- ​ 参考文献 1.用SPSS估计HLM层次线性模型模型 2.R语言线性判别分析(LDA),二次判别分析(QDA)和正则判别分析(RDA) 3.基于R语言的lmer混合线性回归模型 4.R语言...Gibbs抽样的贝叶斯简单线性回归仿真分析 5.在r语言中使用GAM(广义相加模型)进行电力负荷时间序列分析 6.使用SAS,Stata,HLM,R,SPSS和Mplus的分层线性模型HLM 7.R语言中的岭回归...、套索回归、主成分回归:线性模型选择和正则化 8.R语言用线性回归模型预测空气质量臭氧数据 9.R语言分层线性模型案例

    4.1K21

    深度学习中的正则化

    例如,可以加入权重衰减(weight decay)来修改线性回归的训练标准。带权重衰减的线性回归最小化训练集上的均方误差和正则项的和 可以看作拟合训练数据和偏好小权重范数之间的权衡。...我们将正则化后的目标函数记为 : 其中 是权衡惩罚项 和标准目标函数 相对贡献的超参数。将 设为0表示没有正则化。 越大,对应正则化惩罚越大。...如果目标函数确实是二次的(如以均方误差拟合线性回归模型的情况),则该近似是完美的。...因为 被定义为最优,即梯度消失为0,所以该二次项近似中没有一阶项。同样地,因为 是 的一个最优点,我们可以得出 是半正定的结论。当 取得最小值时,其梯度 为0。...目前为止,我们讨论了权重衰减对优化一个抽象通用的二次代价函数的影响。这些影响具体是怎么和机器学习关联的呢?我们可以研究线性回归。它的真实代价函数时二次的,因此我们可以使用相同的方法分析。

    1K10

    运筹学教学|三种TSP问题算法的对比试验及分配问题和TSP问题求解速度对比

    例如,假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。...解决TSP问题的方法有很多,在本期推文中,小编将利用分配问题做的分支定界算法、动态规划算法、cplex直接求解这三种方法求解TSP问题,并对它们所花费的时间进行对比;之后小编还会将分配问题和TSP问题的求解速度进行对比试验...值得一提的是,小编利用Cplex求解TSP问题时使用的是以下模型,与上述推文有所不同,需要以下模型的代码和算例的同学可以在文末进行下载噢~ ?...分配问题的要求一般是给n个人分配n项任务,一个人只能分配一项任务,一项任务只能分配给一个人,将一项任务分配给一个人是需要支付报酬,如何分配任务,保证支付的报酬总数最小。...旅行商问题的要求一般是一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。

    3.5K31
    领券