展开

关键词

Spark history server fails to render compressed inprogress history file in some

Spark history server fails to render compressed inprogress history file in some cases1 Overview我们目前生产环境 Spark history server fails to render compressed inprogress history file in some cases,最后发现这是一个 Spark

18241

聊聊jvm的CompressedClassSpace

Class Space Size + Metaspace area (excluding the Compressed Class Space) Size 查看CompressedClassSpace Class Space部分使用了5354K,而Metaspace area (excluding the Compressed Class Space)使用了45153K-5354K=39799K;而这里显示的 : jcmd pid GC.heap_info(Metaspace为总的部分,包含了class space,而Metaspace area (excluding the Compressed Class Class Space)及Class Space)使用JMX来获取NON_HEAP类型中的name为Metaspace及Compressed Class Space的MemoryPoolMXBean可以得到 Metaspace及Compressed Class Space的使用情况(JMX得到的Metaspace为总的部分,而Metaspace area (excluding the Compressed

2.3K30
  • 广告
    关闭

    50+款云产品免费体验

    提供包括云服务器,云数据库在内的50+款云计算产品。打造一站式的云产品试用服务,助力开发者和企业零门槛上云。

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    man -k : nothing appropriate.

    filesbzdiff (1) - compare bzip2 compressed filesbzegrep (1) - search possibly bzip2 compressed files for a regular expressionbzfgrep (1) - search possibly bzip2 compressed files for a regular expressionbzgrep (1) - search possibly bzip2 compressed files for a regular expressionbzip2 (1) - a block-sorting file ) - recovers data from damaged bzip2 filesbzless (1) - file perusal filter for crt viewing of bzip2 compressed textbzmore (1) - file perusal filter for crt viewing of bzip2 compressed textfunzip (1) - filter for

    8610

    ActiveMQ 安装及使用过程

    persistent = true, type = null, priority = 4, groupID = null, groupSequence = 0, targetConsumerId = null, compressed persistent = true, type = null, priority = 4, groupID = null, groupSequence = 0, targetConsumerId = null, compressed persistent = true, type = null, priority = 4, groupID = null, groupSequence = 0, targetConsumerId = null, compressed persistent = true, type = null, priority = 4, groupID = null, groupSequence = 0, targetConsumerId = null, compressed persistent = true, type = null, priority = 4, groupID = null, groupSequence = 0, targetConsumerId = null, compressed

    8320

    Error: inflate() ret

    Booting p_w_picpath at 00100000 ...Image Name: Linux−2.4.25Image Type: PowerPC Linux Kernel Image (gzip compressed 3GUNZIP ERROR − must RESET board to recoverAnswer:Your kernel p_w_picpath is quite big − nearly 1 MB compressed But your compressed p_w_picpath was storedat 1 MB (0x100000), sothe uncompressed code will overwrite the (remaining) compressed p_w_picpath. Thesolution is thus simple:just use a higher address to download the compressed p_w_picpath into RAM.

    22010

    unity3d纹理格式设置

    将Texure Type设置为Advanced时纹理的格式列表格式详解Automatic Compressed压缩RGB纹理,默认选项,常用的漫反射纹理格式。 4位像素(32KB, 256x256)RGB Compressed DXT1压缩的RGB纹理。常用的漫反射纹理格式。 4位像素(32KB, 256x256)RGBA Compressed DXT5压缩的RGBA纹理。是漫反射和高光控制纹理的主要格式。 1字节像素(64KB, 256x256)RGB Compressed ETC 4bits压缩的RGB纹理,是Android工程默认的纹理格式,不支持alpha通道。 (32KB, 256x256)RGB Compressed PVRTC 2bits压缩的RGB纹理,支持Imagination PowerVR GPU2位像素 (16KB, 256x256)RGBA Compressed

    40010

    PHP的zlib压缩工具扩展包学习

    = gzcompress(Compress me, 9);echo $compressed; x�s��-(J-.V�M�? 编码,使用gzip压缩格式,实际上是使用defalte 算法压缩数据,然后加上文件头和adler32校验$compressed = gzencode(Compress me, 9);echo $compressed 编码方式,使用deflate数据压缩算法,实际上是先用 LZ77 压缩,然后用霍夫曼编码压缩$compressed = gzdeflate(Compress me, 9);echo $compressed 通用压缩函数$compressed = zlib_encode(Compress me, ZLIB_ENCODING_GZIP, 9);echo $compressed; ZLIB_ENCODING_RAW , 数据压缩, ZLIB_NO_FLUSH);$compressed .= deflate_add($deflateContext, ,更多数据, ZLIB_NO_FLUSH);$compressed

    18520

    Node.Js生成比特币地址

    console.log(标准地址: + publicKey.toString(hex)) compressedpublicKey = curvePt.getEncoded(true) true forces compressed public keyconsole.log(compressed: + publicKey.toString(hex)) var sha = crypto.createHash(sha256).update (publicKey).digest()var pubkeyHash = crypto.createHash(rmd160).update(sha).digest() pubkeyHash of compressed public keyconsole.log(pubkeyHash: + pubkeyHash.toString(hex)) address of compressed public keyconsole.log

    1.1K150

    python lzstring

    安装pip install lzstringimport lzstring ic = {name: root, password: 123456} x = lzstring.LZString()compressed = x.compressToBase64(str(ic))print(compressed)decompressed = x.decompressFromBase64(compressed)print

    19940

    Oracle RMAN各类压缩算法对比测试

    backup at: `date` >> orabakrmanrman01-basic.logrman target orabakrmanrman01-basic.logrun {backup as compressed ORA_DISK_4channel ORA_DISK_4: SID=2 instance=jingyudb1 device type=DISKchannel ORA_DISK_1: starting compressed comment=NONEchannel ORA_DISK_2: backup set complete, elapsed time: 00:08:25channel ORA_DISK_2: starting compressed comment=NONEchannel ORA_DISK_2: backup set complete, elapsed time: 00:00:01channel ORA_DISK_2: starting compressed backup at: `date` >> orabakrmanrman05-high.logrman target orabakrmanrman05-high.logrun {backup as compressed

    23940

    VL53L0X激光测距传感器.ESP32使用篇

    921600Changed.Configuring flash size...Auto-detected Flash size: 4MBCompressed 8192 bytes to 47...Wrote 8192 bytes (47 compressed effective 5461.4 kbits)...Hash of data verified.Compressed 15856 bytes to 10276...Wrote 15856 bytes (10276 compressed 991.0 kbits)...Hash of data verified.Compressed 221392 bytes to 114130...Wrote 221392 bytes (114130 compressed effective 1065.0 kbits)...Hash of data verified.Compressed 3072 bytes to 128...Wrote 3072 bytes (128 compressed

    57620

    再次说明md5检查文件完整度的重要性

    fq.gzgunzip -t P9_Norm_Exome_2_val_2.fq.gz 发现的确是clean数据有问题,如下:gzip: P10_Norm_Exome_2_val_2.fq.gz: invalid compressed data--format violatedgzip: P1_DCIS_Exome_1_val_1.fq.gz: invalid compressed data--format violatedgzip : P2_DCIS_Exome_2_val_2.fq.gz: invalid compressed data--format violatedgzip: P2_Norm_Exome_1_val_1.fq.gz : invalid compressed data--format violated 那这样就有两种可能,第一是Trim Galore 运行失败,第二是raw 数据有问题首先检查log日志,发现6个样本都是 30075503 68 length=76@SRR6269872.30075503 30075503 68 length=76 gzip: P9_Norm_Exome_1.fastq.gz: invalid compressed

    72610

    RMAN catalog 的创建和使用

    run{ 2> allocate channel ch1 device type disk; 3> allocate channel ch2 device type disk; 4> backup as compressed list backup by file; 5.累计增量备份(1级) RMAN> run{ 2> allocate channel ch1 device type disk; 3> backup as compressed 7> release channel ch1;} 6.备份表空间 RMAN> run{ 2> allocate channel ch1 device type disk; 3> backup as compressed list backupset tag=tbs; 7.备份数据文件 RMAN> run{ 2> allocate channel ch1 device type disk; 3> backup as compressed _119_733069427.arc 9.基于SCN来备份归档日志 RMAN> run{ 2> allocate channel ch1 device type disk; 3> backup as compressed

    15320

    各种类型文件的Content-Type 原

    video3gpp,   23      .602: applicationx-t602,   24      .669: audiox-mod,   25      .7z: applicationx-7z-compressed ,  570      .tar.bz2: applicationx-bzip-compressed-tar,  571      .tar.gz: applicationx-compressed-tar ,  572      .tar.lzma: applicationx-lzma-compressed-tar,  573      .tar.lzo: applicationx-tzo,  574       .tar.xz: applicationx-xz-compressed-tar,  575      .tar.z: applicationx-tarz,  576      .tbz: applicationx-bzip-compressed-tar ,  577      .tbz2: applicationx-bzip-compressed-tar,  578      .tcl: textx-tcl,  579      .tex: textx-tex

    1K20

    MySQL 8.0 InnoDB压缩行格式性能测试

    ----InnoDB compressed好吃吗?不,它有点硌牙。1. 背景信息1. 测试环境2. 背景信息多年前我对InnoDB表压缩格式做了个简单的测试,得到的结论大概是:InnoDB采用compressed行格式后,OLTP整体性能大约为原来的110,压缩率约为50%。 随着MySQL 8.0.20的发布,我又重燃了对compressed行格式的兴趣,今日就此再做了个简单测试。1. 综上,当数据量比较小的时候,并且读多写少的业务场景中,可以考虑使用Compressed行格式。而如果是写多读少的业务场景,则最好使用Dynamic行格式。 根据测试结果的几点结论:a) 当数据无法全部放在buffer pool中的时候,如果是读多写少的业务场景,则用Compressed行格式性能更高。

    33830

    2018-06-13 RestTemplate处理Gzip压缩

    org.apache.commons commons-jcs 2.2 pom commons-io commons-io 2.6 public static String decompress(final byte[] compressed ) { if (isNull(compressed) || compressed.length == 0) { return null; } try (final GZIPInputStream gzipInput = new GZIPInputStream(new ByteArrayInputStream(compressed)); final StringWriter stringWriter = new StringWriter

    66930

    Android Tiny集成图片压缩框架的使用

    new BitmapCallback() { @Override public void callback(boolean isSuccess, Bitmap bitmap) { return the compressed new FileCallback() { @Override public void callback(boolean isSuccess, String outfile) { return the compressed FileWithBitmapCallback() { @Override public void callback(boolean isSuccess, Bitmap bitmap, String outfile) { return the compressed BitmapBatchCallback() { @Override public void callback(boolean isSuccess, Bitmap outfile) { return the batch compressed FileWithBitmapBatchCallback() { @Override public void callback(boolean isSuccess, Bitmap outfile) { return the batch compressed

    45931

    with as 语句真的会把查询的数据存内存嘛?

    Union Statistics: Num rows: 2 Data size: 0 Basic stats: PARTIAL Column stats: NONE File Output Operator compressed Union Statistics: Num rows: 2 Data size: 0 Basic stats: PARTIAL Column stats: NONE File Output Operator compressed col2 Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE File Output Operator compressed Union Statistics: Num rows: 2 Data size: 0 Basic stats: PARTIAL Column stats: NONE File Output Operator compressed Union Statistics: Num rows: 2 Data size: 0 Basic stats: PARTIAL Column stats: NONE File Output Operator compressed

    49130

    Rust FFI 编程 - 手动绑定 C 库入门 01

    , size_t* compressed_length); snappy_status snappy_uncompress(const char* compressed, size_t compressed_length u8, compressed_length: size_t, result: *mut size_t) -> c_int; fn snappy_validate_compressed_buffer(compressed Rust 代码为 compressed: *mut u8,C 代码为 char* compressed。 这里这个变量就是 compressed。同样,类型为 u8,意思就是指向一个连续内存空间的指针。这个连续内存空间,可用来存放 C 字符串。接着看第四个参数。 (max compressed length of a 100 byte buffer: {}, x);}这个函数的作用,就是输入一个整数,然后计算一个整数输出。

    37731

    axis2:ServiceClient增加GZIP压缩支持

    final String MC_ACCEPT_GZIP = transport.http.acceptGzip; ** * by default the HTTP request body is not compressed . set this message * context property to true to have the request body gzip compressed. * public static Before doing this, you must make sure that the receiving end supports GZip compressed streams.

    28510

    相关产品

    • 云服务器

      云服务器

      腾讯云服务器(CVM)为您提供安全可靠的弹性云计算服务。只需几分钟,您就可以在云端获取和启用云服务器,并实时扩展或缩减云计算资源。云服务器 支持按实际使用的资源计费,可以为您节约计算成本。

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭

      扫码关注云+社区

      领取腾讯云代金券