首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于求解器的路径规划算法实现及性能分析

但是针对性的算法设计不仅难度很高,而且难以跟上应用场景和需求信息的变化速度。 VRP求解器应运而生,它能直接调用其中构造好的算法对多种多样的模型进行求解,为路径规划问题提供了便捷的求解方式。...因此研究求解器、学习掌握求解器算法、对实际场景中不同求解器的性能表现进行评估和对比并了解不同VRP求解器对于不同场景的适应性,求解器介绍能够为解决实际问题时求解器的选择提供决策支持,有利于获得更好的求解结果...PDPTW)四种经典VRP模型展开,对比三种求解器的基本特性以及在不同问题中的性能表现。...模型目标不可改写 模型可随意自定义,符合可求解问题类型即可 其他功能 求解功能和可视化功能 仅求解功能 求解功能和可视化功能 综上所述,JSprit、OR-Tools和CPLEX都能满足VRP及其变体问题的求解...;CPLEX具有很好的语言支持度,拥有多达 6 中编程语言接口;此外CPLEX基于精确算法进行求解,能够寻求到最优解。

7.9K20

干货|十分钟快速掌握CPLEX求解VRPTW数学模型(附JAVA代码及CPLEX安装流程)

在VRPTW中,车辆除了要满足VRP问题的限制之外,还必须要满足需求点的时窗限制,而需求点的时窗限制可以分为两种,一种是硬时窗(Hard Time Window),硬时窗要求车辆必须要在时窗内到达,早到必须等待...3.CPLEX操作补充说明 关于上述java代码中调用的cplex,特在此附上cplex安装说明: 1 软件下载及安装 Cplex64位版本下载地址可移步 留言区 获取百度云网盘链接~~ ?...2 小编这里是在Eclipse中使用Java调用Cplex,所以需要在Eclipse中配置Cplex调用环境。...将cplex.jar加到工程的Build Path中: 在工程中点击鼠标右键, Build Path->Configure Build Path ?...2. cplex1263.dll可以设置到运行时的环境中(VM arguments),或者添加到项目的Native library location(这里小编选用的是第二种): ? ?

17.8K100
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    PyTorch中的梯度累积

    我们在训练神经网络的时候,超参数batch_size的大小会对模型最终效果产生很大的影响,通常的经验是,batch_size越小效果越差;batch_size越大模型越稳定。...如何在有限的计算资源下,采用更大的batch_size进行训练,或者达到和大batch_size一样的效果?...结果爆显存了,那么不妨设置batch_size=16,然后定义一个变量accum_steps=4,每个mini-batch仍然正常前向传播以及反向传播,但是反向传播之后并不进行梯度清零,因为PyTorch中的...通过这种延迟更新的手段,可以实现与采用大batch_size相近的效果 References pytorch中的梯度累加(Gradient Accumulation) Gradient Accumulation...in PyTorch PyTorch中在反向传播前为什么要手动将梯度清零?

    1.5K20

    干货|十分钟快速掌握CPLEX求解VRPTW数学模型(附JAVA代码及CPLEX安装流程)

    由于VRP问题的持续发展,考虑需求点对于车辆到达的时间有所要求之下,在车辆途程问题之中加入时窗的限制,便成为带时间窗车辆路径问题(VRP with Time Windows, VRPTW)。...带时间窗车辆路径问题(VRPTW)是在VRP上加上了客户的被访问的时间窗约束。在VRPTW问题中,除了行驶成本之外, 成本函数还要包括由于早到某个客户而引起的等待时间和客户需要的服务时间。...在VRPTW中,车辆除了要满足VRP问题的限制之外,还必须要满足需求点的时窗限制,而需求点的时窗限制可以分为两种,一种是硬时窗(Hard Time Window),硬时窗要求车辆必须要在时窗内到达,早到必须等待...//将上述定义的链表加入到链表routes中 servetimes.add(t); //同上 } //判断建立的模型是否可解 if(model.solve...VRPTW的cplex模型 private void build_model() throws IloException { //model model = new IloCplex

    3.2K11

    用单纯形法求解线性规划(linear programming)问题,速度到底有多快呢?

    关于这个问题我们之前专门做了一篇推文来介绍以及求解的,详情可见 “干货|十分钟快速掌握CPLEX求解VRPTW数学模型(附Java代码及CPLEX安装流程)” 解问题之前来先看看这是个什么问题。...“ 车辆路线问题(VRP)最早是由Dantzig和Ramser于1959年首次提出,它是指一定数量的客户,各自有不同数量的货物需求,配送中心向客户提供货物,由一个车队负责分送货物,组织适当的行车路线...时间窗就是一种约束,车辆除了要满足VRP问题的限制之外,还必须满足需求点的时间窗约束(例如服务只能在早上八点到十点之间开始),而需求点的时间窗限制可以分为两种,一种是硬时间窗(Hard Time Window...” 问题模型如下: ? ? ? ? ? ? 上述模型的决策变量带整数约束,本次求解其线性松弛解。求解线性松弛解可以调用CPLEX这一求解器中的单纯形法进行求解。...关于内存与CPLEX求解速度的关系小编在网上看到有一种说法指出当CPLEX发现仅剩有限的内存可供使用时将会自动运行算法进行调整补偿,这些调整几乎都会降低速度。

    2.6K20

    维度模型数据仓库(二十) —— 累积的度量

    累积的度量         本篇说明如何实现累积月底金额,并对数据仓库模式和初始装载、定期装载脚本做相应地修改。累积度量是半可加的,而且它的初始装载比前面做的要复杂的多。        ...可加、半可加、不可加事实         事实表中的数字度量可划分为三类。最灵活、最有用的度量是完全可加的,可加性度量可以按照与事实表关联的任意维度汇总。...修改模式         建立一个新叫做month_end_balance_fact的事实表,用来存储销售订单金额的月底累积值。...month_end_balance_fact表在模式中构成了另一个星型模式。新的星型模式除了包括这个新的事实表,还包括两个其它星型模式中已有的维度表,即product_dim和month_dim。...(也就是累积度量)必须要小心使用,因为它不是全可加(也即半可加)的。

    54520

    数学规划求解器性能测试之VRPTW

    由于VRP问题的持续发展,考虑需求点对于车辆到达的时间有所要求之下,在车辆途程问题之中加入时窗的限制,便成为带时间窗车辆路径问题(VRP with Time Windows, VRPTW)。...在VRPTW中,车辆除了要满足VRP问题的限制之外,还必须要满足需求点的时窗限制,而需求点的时窗限制可以分为两种,一种是硬时窗(Hard Time Window),硬时窗要求车辆必须要在时窗内到达,早到必须等待...模型 02 VRPTW的模型在我们公众号的之前的推文中已有详细介绍,因此不再赘述。...在此贴上一篇VRPTW的相关推文,感兴趣的小伙伴可以自行浏览~ 干货|十分钟快速掌握CPLEX求解VRPTW数学模型(附JAVA代码及CPLEX安装流程) 03 代码 ``定义需要用到的参数: class...Gurobi在两个小时内能成功求解的算例规模只有120-130个点,并没有我们想象中的那么大。在企业应用中,更大规模的VRPTW并不少见,但其求解所需时间却不能在企业所能忍受的范围内。

    3.3K43

    车辆路径优化问题求解工具Jsprit的简单介绍与入门

    (Capacitated VRP) 多场站VRP(VRP with Multiple Depots) 带时间窗的VRP(VRP with Time Windows) 带回程的VRP(VRP with Backhauls...jsprit-instances里面有两个部分,一个是instance,另一个则是读取算例的代码,存放在一个src文件夹中。...02 与Cplex求解对比 上述是一个简单的入门的例子,前文提到这个工具箱是基于元启发式算法的,在上述算例中,得到的解是算例的最优解,那它跟例如Cplex这样的求解器在求解性能上会差多少呢,这里我们以一个带时间窗的车辆路径规划问题的代码为例来比较一下两者的求解结果...由于篇幅关系,这里就只放用该求解器求解带时间窗的车辆路径规划问题的代码,用Cplex求解的代码以及用到的算例和外部依赖包等等都会给大家。...总的来说小编还是觉得这个东西不错的,起码在使用上还是比Cplex方便一些的,正所谓技多不压身,各位可以学一学,看一看啦。

    2.3K21

    车辆路径优化问题求解工具Jsprit的简单介绍与入门

    (Capacitated VRP) 多场站VRP(VRP with Multiple Depots) 带时间窗的VRP(VRP with Time Windows) 带回程的VRP(VRP with Backhauls...jsprit-instances里面有两个部分,一个是instance,另一个则是读取算例的代码,存放在一个src文件夹中。...02 与Cplex求解对比 上述是一个简单的入门的例子,前文提到这个工具箱是基于元启发式算法的,在上述算例中,得到的解是算例的最优解,那它跟例如Cplex这样的求解器在求解性能上会差多少呢,这里我们以一个带时间窗的车辆路径规划问题的代码为例来比较一下两者的求解结果...由于篇幅关系,这里就只放用该求解器求解带时间窗的车辆路径规划问题的代码,用Cplex求解的代码以及用到的算例和外部依赖包等等都会给大家。...总的来说小编还是觉得这个东西不错的,起码在使用上还是比Cplex方便一些的,正所谓技多不压身,各位可以学一学,看一看啦。 ?

    3.6K52

    CPLEX出现q1 is not convex?

    比如说y=kx 就是线形的 而y=x^2就是非线形的线形的图形一般是一条直线。 “非线性”的意思就是“所得非所望”。一个线性关系中的量是成比例的:十枚橘子的价钱是一枚的十倍。...也就是说你的模型中很可能出现了多个变量相乘的情况,例如下面这种情景: ? 要解决这个问题,首先就得想你的模型给linearlized了。...举个简单的例子,VRP的arc-flow模型中货物流常见的约束如下: ? 其中 和 为决策变量, 表示车辆 离开客户 以后的载重量,而 为1表示车辆走过边( ),否则为0。...可以看到不等式右边出现了变量和变量相乘的情况,这就造成了我们刚刚说的“非线性”问题,那么这个模型放进cplex中肯定会报“not convex”的错误。...为了让cplex能求解该模型,我们需要将非线性的约束转成线性的。 常见的一个办法是引入一个充分大的数,我们都喜欢叫它大M。当然这个数具体要多大,是不是越大越好,也不一定,后面我再讲。

    2.5K10

    线性规划&整数规划求解速度PK

    ,在不考虑整数约束的情况下得到的是整数规划的线性松弛模型。...没错,它就是--- 带时间窗约束的车辆路径规划问题 按照惯例我们先要介绍一下这个问题,具体可以参考我们之前的这篇文章“干货|十分钟快速掌握CPLEX求解VRPTW数学模型(附Java代码及CPLEX安装流程...时间窗就是一种约束,车辆除了要满足VRP问题的限制之外,还必须满足需求点的时间窗约束(例如服务只能在早上八点到十点之间开始),而需求点的时间窗限制可以分为两种,一种是硬时间窗(Hard Time Window...” 问题模型如下: ? ? ? ? ? ? 这个问题模型本身是带有整数规划的,求解的方法在上面也有一些介绍。我们可以借助求解器例如CPLEX来帮助我们完成这个过程。.../CPLEX/homepages/usrmancplex.html 算例使用的是solomon的算例(C101、扩展算例C1_2_5),在C101中分别取前10、15、20、25、30、35、40、45

    4.2K30

    番茄路径优化系统介绍

    1 问题背景 整个项目还是基于VRP的一个背景,处理的问题在涵盖经典VRPTW的基础上,还包括了处理以下约束的能力: 1....不过口说无凭,将我们的算法和cplex进行对比,首先是小规模算例上的对比(规定了CPLEX求解时间上限为1小时): 可以看到,相比较cplex而言,我们的算法有以下特点: 小规模算例对比 1....质量更高:算例(1-7)我们的算法均取得了与CPLEX同样的最优解,在算例(8-11)上我们的算法取得了比CPLEX在1小时内求得的可行解更优的解(表中值越低越好) 2....时间更快:除了算例1时间略高于CPLEX外,其余算例时间均比CPLEX低。且CPLEX的求解时间随着问题规模增加呈指数增长。当规模变大时,问题的求解时间急剧增加,在现实中很难应用。...同时为了弥补启发式算法在求解质量上的不足,我们在算法中应用了一种比较的“邻域搜索多样化”技术 通过对搜索过程中的目标值增加惩罚从而避免陷入局部最优,以扩大搜索过程的多样性达到寻找更优解的目的。

    1K20

    PyTorch 中的多 GPU 训练和梯度累积作为替代方案

    在本文[1]中,我们将首先了解数据并行(DP)和分布式数据并行(DDP)算法之间的差异,然后我们将解释什么是梯度累积(GA),最后展示 DDP 和 GA 在 PyTorch 中的实现方式以及它们如何导致相同的结果...正如我们所说,因为小批量会导致收敛速度慢,所以我们可以使用三种主要方法来增加有效批量大小: 使用多个小型 GPU 在小批量上并行运行模型 — DP 或 DDP 算法 使用更大的 GPU(昂贵) 通过多个步骤累积梯度...从上面的例子中,我们可以通过 3 次迭代累积 10 个数据点的梯度,以达到与我们在有效批量大小为 30 的 DDP 训练中描述的结果相同的结果。...梯度累积代码 当反向传播发生时,在我们调用 loss.backward() 后,梯度将存储在各自的张量中。...因此,为了累积梯度,我们调用 loss.backward() 来获取我们需要的梯度累积数量,而不将梯度设置为零,以便它们在多次迭代中累积,然后我们对它们进行平均以获得累积梯度迭代中的平均梯度(loss

    46120

    微软确认Windows 10累积更新KB4482887中的新问题

    摘要: 微软刚刚确认了Windows 10版本1809累积更新KB4482887中存在的一个新问题,公司表示已收到有关游戏性能可能受到影响的报告。...在对原始KB4482887页面的更新中,微软表示已经开始修复该问题,它应该包含在即将发布的版本中。 ?...受此性能问题影响的完整游戏列表目前还没有公布,但如果您在Windows 10版本1809上遇到任何减速,则最新的累积更新很可能是问题的来源。...有关于问题的解决方案目前还没有发布,删除这一累积更新几乎是解决该错误的唯一方法。卸载累积更新KB4482887不会产生任何安全风险。 该补丁于3月1日发布,专注于非安全性改进。...有趣的是,之前在测试过程中,已经有测试人员通报了这一问题,但不知何故这一补丁依然被广泛推送到所有计算机。

    60620

    微软确认Windows 10累积更新KB4482887中的新问题

    摘要: 微软刚刚确认了Windows 10版本1809累积更新KB4482887中存在的一个新问题,公司表示已收到有关游戏性能可能受到影响的报告。...在对原始KB4482887页面的更新中,微软表示已经开始修复该问题,它应该包含在即将发布的版本中。 ?...受此性能问题影响的完整游戏列表目前还没有公布,但如果您在Windows 10版本1809上遇到任何减速,则最新的累积更新很可能是问题的来源。...有关于问题的解决方案目前还没有发布,删除这一累积更新几乎是解决该错误的唯一方法。卸载累积更新KB4482887不会产生任何安全风险。 该补丁于3月1日发布,专注于非安全性改进。...有趣的是,之前在测试过程中,已经有测试人员通报了这一问题,但不知何故这一补丁依然被广泛推送到所有计算机。

    54340

    模拟退火算法解决带时间窗的车辆路径规划问题

    本文附带Java代码详解,是根据过去学长写的用禁忌搜索算法求解相关问题的代码修改而来的: 禁忌搜索算法求解带时间窗的车辆路径规划问题详解(附Java代码) 问题描述 车辆路径规划问题(VRP)是运筹学中经典...带时间窗的车辆路径规划问题(Vehicle Routing Problem with Time Window,VRPTW)是在VRP基础上添加配送时间约束条件产生的一个新问题。...在这类问题中,给定车辆到达目的地的最早时间和最晚时间,要求车辆必须在规定的时间窗内到达,这是一个硬性条件,但是在搜索过程中却可以适当无视此条件以扩大搜索范围。...VRPTW的更多详细介绍可以参考之前的推文: 干货|十分钟快速掌握CPLEX求解VRPTW数学模型(附JAVA代码及CPLEX安装流程) 算法介绍 模拟退火算法是启发式算法的一种,也是一种贪心算法,它从某一较高初温出发...,在每次调用评价函数的过程中,都会动态改变系数a,b。

    2.2K52

    手把手教你用CPLEX求解一个数学模型(Java版)

    很多集合啊,参数啊,范围啊都没有想清楚,到写代码的时候就各种凌乱了。。。 好了回到我们的正题,刚刚读入了算例。接下来我们需要定义模型中需要用到的集合,这些集合是哪些集合呢?...在CPLEX中,你只需要知道以下三点,就能轻松驾驭一个数学模型啦: 决策变量定义 添加优化目标 添加约束 想想也是哦,一个数学模型无非就是由决策变量、优化目标和约束组成嘛。下面我们来一个一个讲解。...,我这里贴上官方的解释好啦: 如果你有不同类型的变量,指定下第三个参数IloNumVarType就好啦: 模型中另一个决策变量 类似,我就不写啦。...numExpr()函数哦: 在CPLEX的JavaAPI中呢,涉及到CPLEX对象的一些表达式,是不能直接通过Java自带的+-*/进行运算的。...现在表达式有了,我们来看看怎样通过sum()、diff()、prod()这些函数,实现模型中的式子。

    8.3K52

    OptaPlanner实用技术 - 批量规划和实时规划(1)

    在日常的规划应用中,无论是APS,VRP还是排班场景,有两个极其常见的需求,分别是批量规划和实时规划。下面我们对这两种情况作更深入探讨。...批量规划目前的不足 通过批量、并行规划,可以实现同一个模型的多个数据集同时进行规划运算。...又如在VRP场景中,当一位司机根据规划好的运输计划执行运输任务时,中途遇到堵车等不可预见情况(引擎在进行规划运算时,会预设所有路线都处在一个理想路况),可通过手机APP将当前情况反映到服务器,VRP规划服务程序会即时变更当前路线的路况...在VRP场景中,规划服务会在车辆上班开始执行运输作业之前,生成一个行驶路径方案。...,重新跑一次VRP规划,生成一个新的运输计划。

    1.5K30

    OR-Tools|带你了解谷歌开源优化工具(Google Optimization Tools)

    此外,OR-Tools还支持第三方求解器,可接入CPLEX等商用求解器以及SCIP等开源求解器。 02 问题介绍 优化问题类型众多,对于不同类型的问题,需要使用不同的方法和算法来寻求最佳解决方案。...2.1 线性规划与整数规划 熟悉运筹学的小伙伴都知道,线性规划是指寻求以一组线性关系为模型的问题的最佳解决方案。...通常情况下,“最佳”是指总距离最小或成本最低的路线。 最基本的路径规划问题是车辆路径问题(VRP)。而在不同限制条件的约束之下,VRP问题衍生出多种不同类型的变种问题。...6.VRP与放弃访问问题(VRP with dropped visits),其中车辆不需要访问所有位置,但必须为每次放弃的访问支付罚款。...如果想要运行范例中的代码,则可直接在IDEA中打开并运行。

    12K32
    领券