首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

FFmpeg在Intel GPU上的硬件加速与优化

英特尔提供了一套基于VA-API/Media SDK的硬件加速方案,通过在FFmpeg中集成Intel GPU的媒体硬件加速能力,为用户提供更多的收益。...文 / 赵军 整理 / LiveVideoStack 大家好,今天与大家分享的主题是FFmpeg在 Intel GPU上的硬件加速与优化。...6、Intel GPU Intel GPU从Gen 3的Pinetrail发展到Gen 9.5的Kabylake,每一代GPU的功能都在增强,在Media上的能力也在增强。...提及编码,硬件加速的编码带来的最大好处是速度优势:我曾经基于Skylake-U这样双核四线程的低电压CPU上测试1080P的转码,基本可实现240FPS的实时转码;同时,在大规模部署时不能不考虑功耗比与性价比...9、其他问题 9.1 CPU与GPU的数据交换 当我们在处理一些异构计算时,始终需要面对此问题:CPU与GPU、DSP之间的数据交换。

3.9K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    FastFormers:实现Transformers在CPU上223倍的推理加速

    作者:Parth Chokhra 编译:ronghuaiyang 导读 使用多头注意力的Transform在cpu上实现222倍的加速。 ?...“将这些建议的方法应用到SuperGLUE基准测试中,与开箱即用的CPU模型相比,作者能够实现9.8倍到233.9倍的加速。在GPU上,我们也实现了12.4倍的加速。"...最后,模型量化,通过优化利用硬件加速能力使模型可以更快的执行。CPU上采用8bit量化方法,GPU上将所有模型参数转换为16位浮点数据类型,最大限度地利用高效Tensor Cores。...在CPU上的8bit量化矩阵乘法:由于减少了CPU指令数量,8bit量化矩阵乘法与32位浮点运算相比带来了显著的速度提升。...batch size为1的BoolQ验证数据集上的CPU推理加速 总结 本文介绍了FastFormers,它能对基于Transformer的模型在各种NLU任务上实现高效的推理时间性能。

    2.1K10

    在GPU上加速RWKV6模型的Linear Attention计算

    flash-linear-attention库的目的是使用Triton来加速rwkv6_linear_attention_cpu这个naive的实现。...Profile代码编写 上一节明确了,我们需要加速RWKV模型中rwkv6_linear_attention_cpu的计算,https://github.com/sustcsonglin/flash-linear-attention...这个库在2024年4月份支持了RWKV6模型,它加速RWKV 6 Linear Attention计算的核心api有两个,fused_recurrent_rwkv6和chunk_rwkv6。...kernel分布情况: 在GPU kernel的具体执行分布中,fused_recurrent_rwkv6_fwd_kernel已经是比例的最大的kernel了,而这个kernel的整体耗时非常低只花了...还有就是这个还原的公式没有返回state,而是在B,H的内循环中申请了一个局部的state,为了保持和上面的公式一致,需要把state的形状改成[B, H, N, N],就像在profile代码编写那一节看到的这样

    32310

    如何在 GPU 上加速数据科学

    CPU 在时钟频率更重要的任务中会更好——或者根本没有 GPU 实现。如果你尝试执行的流程有一个 GPU 实现,且该任务可以从并行处理中受益,那么 GPU 将更加有效。 ?...许多在深度学习中完成的卷积操作是重复的,因此在 GPU 上可以大大加速,甚至可以达到 100 次。...今天的数据科学没有什么不同,因为许多重复的操作都是在大数据集上执行的,库中有 pandas、Numpy 和 scikit-learn。这些操作也不太复杂,无法在 GPU 上实现。...CPU 上的 DBSCAN 使用 Scikit-Learn 在 CPU 上运行 DBSCAN 很容易。我们将导入我们的算法并设置一些参数。...使用 Scikit-Learn 在 CPU 上运行 DBSCAN 的结果 GPU 上带 Rapids 的 DBSCAN 现在,让我们用 Rapids 进行加速!

    2K20

    如何在 GPU 上加速数据科学

    CPU 在时钟频率更重要的任务中会更好——或者根本没有 GPU 实现。如果你尝试执行的流程有一个 GPU 实现,且该任务可以从并行处理中受益,那么 GPU 将更加有效。 多核系统如何更快地处理数据。...许多在深度学习中完成的卷积操作是重复的,因此在 GPU 上可以大大加速,甚至可以达到 100 次。...今天的数据科学没有什么不同,因为许多重复的操作都是在大数据集上执行的,库中有 pandas、Numpy 和 scikit-learn。这些操作也不太复杂,无法在 GPU 上实现。...上的 DBSCAN​ 使用 Scikit-Learn 在 CPU 上运行 DBSCAN 很容易。...使用 cuML 在 GPU 上运行 DBSCAN 的结果 ​使用 Rapids GPU 获得超高速​ 我们从 Rapids 获得的加速量取决于我们正在处理的数据量。

    10810

    如何在 GPU 上加速数据科学

    CPU 在时钟频率更重要的任务中会更好——或者根本没有 GPU 实现。如果你尝试执行的流程有一个 GPU 实现,且该任务可以从并行处理中受益,那么 GPU 将更加有效。 多核系统如何更快地处理数据。...许多在深度学习中完成的卷积操作是重复的,因此在 GPU 上可以大大加速,甚至可以达到 100 次。...今天的数据科学没有什么不同,因为许多重复的操作都是在大数据集上执行的,库中有 pandas、Numpy 和 scikit-learn。这些操作也不太复杂,无法在 GPU 上实现。...上的 DBSCAN 使用 Scikit-Learn 在 CPU 上运行 DBSCAN 很容易。...使用 cuML 在 GPU 上运行 DBSCAN 的结果 使用 Rapids GPU 获得超高速 我们从 Rapids 获得的加速量取决于我们正在处理的数据量。

    2.5K20

    ·PyTorch如何使用GPU加速(CPU与GPU数据的相互转换)

    [开发技巧]·PyTorch如何使用GPU加速(CPU与GPU数据的相互转换) 配合本文推荐阅读:PyTorch中Numpy,Tensor与Variable深入理解与转换技巧 1.问题描述 在进行深度学习开发时...,GPU加速可以提升我们开发的效率,速度的对比可以参照笔者这篇博文:[深度应用]·主流深度学习硬件速度对比(CPU,GPU,TPU)结论:通过对比看出相较于普通比较笔记本的(i5 8250u)CPU,一个入门级显卡...本文在数据存储的层面上,帮大家解析一下CPU与GPU数据的相互转换。让大家可以掌握PyTorch使用GPU加速的技巧。...当可以使用GPU,我们不想使用,可以直接赋值use_gpu = False 我们在进行转换时,需要把数据,网络,与损失函数转换到GPU上 1.构建网络时,把网络,与损失函数转换到GPU上 model =...() 2.训练网络时,把数据转换到GPU上 if (use_gpu): x,y = x.cuda(),y.cuda() 3.取出数据是,需要从GPU准换到CPU上进行操作 if(use_gpu)

    35.4K88

    在gpu上运行Pandas和sklearn

    但是它使用CPU 进行计算操作。该过程可以通过并行处理加快,但处理大量数据仍然效率不高。 在以前过去,GPU 主要用于渲染视频和玩游戏。...但是现在随着技术的进步大多数大型项目都依赖 GPU 支持,因为它具有提升深度学习算法的潜力。 Nvidia的开源库Rapids,可以让我们完全在 GPU 上执行数据科学计算。...开启GPU 在菜单栏Colab 的“Runtime”选项中选择“Change runtime type”。然后选择GPU作为硬件加速器。...重新启动后运行下面命令,确定安装是否成功: import condacolab condacolab.check() 下面就是在colab实例上安装Rapids了 !...训练一个基于skearn的模型: 训练一个基于gpu的模型和训练一个基于cpu的模型没有太大的区别。 这里训练sklearn模型需要16.2秒,但是训练基于gpu的cuML模型只需要342毫秒!

    1.6K20

    基因组大数据计算:CPU和GPU加速方案深度评测

    以下我们通过对基于CPU和GPU不同硬件平台的NGS二级分析方案进行详细评测,以期为基因组学研究领域的用户提供参考。...同时,Sentieon针对第三代和第四代Intel Xeon Scalable处理器(以前代号为Sapphire Rapids)进行了改进及优化,更适用于在多核系统上扩展,可以在Xeon平台上实现更快速地处理急诊科及...图片本次评测将比较面向CPU平台的Sentieon软件及面向GPU平台的NVIDIA Clara Parabricks的运算性能和分析准确性,以评估两者在基因组二级分析中的性价比及成本效益。...*通过下表中各计算实例上Sentieon vs. Parabricks的性能对比,可以看出,3rd Intel Xeon平台可在40分钟左右完成30x WGS的数据分析,与GPU平台速度相当。...图片评测结论Sentieon软件是通过改进算法模型实现性能加速(纯CPU环境,支持X86/ARM),不依赖于昂贵高功耗的专用硬件配置(GPU/FPGA),不依赖专有编程语言;同时Sentieon软件针对几乎所有的短读长和长读测序平台进行了优化

    97250

    ParallelX在GPU上运行Hadoop任务

    ParallelX的联合创始人Tony Diepenbrock表示,这是一个“GPU编译器,它能够把用户使用Java编写的代码转化为OpenCL,并在亚马逊AWS GPU云上运行”。...然而,当被问起ParallelX是否将会支持亚马逊之外的其他不同云服务提供商时,Tony的答复是“暂时还没有,不过我们将拥有一套SDK,供使用内部Hadoop集群的客户使用。...大部分GPU云服务提供商在HPC云中提供GPU,但我们希望能够以比较低廉的价格使用云服务中的GPU。毕竟,这正是Hadoop的设计初衷——便宜的商用硬件。”...Tony提到,ParallelX所适用的工作场景是“编译器将把JVM字节码转换为OpenCL 1.2的代码,从而能够通过OpenCL编译器编译为Shader汇编,以便在GPU上运行。...在我们测试中,使用我们的流水线框架,I/O吞吐几乎能够达到GPU计算吞吐能力的水平。”

    1.1K140

    在Ubuntu上安装CPU版本的Caffe

    https://blog.doiduoyi.com/authors/1584446358138 初心:记录优秀的Doi技术团队学习经历 前言 Caffe是目前比较常用的深度学习框架,这个框架安装没有其他一下主流框架那么简单...在Ubuntu上安装Caffe 如果Ubuntu版本是>= 17.04的,就可以使用以下的方式安装Caffe,注意安装的是Python 3的版本。...如果之前安装过了,重复执行命令也没有问题的。...make -j4 pycaffe make -j4 all make -j4 test make -j4 runtest 添加环境变量 使用命令vim /etc/profile,在该文件的最后加上下面的这行代码...data'].reshape(1, 3, nh, nw) 以下代码片段是加载图片得到预测结果的,out['prob']输出的是每个label的概率,使用到的synset.txt也是刚才那个GitHub上的文件

    3.1K10

    如何让Transformer在GPU上跑得更快?快手:需要GPU底层优化

    机器之心专栏 作者:任永雄、刘洋、万紫微、刘凌志 Transformer 对计算和存储的高要求阻碍了其在 GPU 上的大规模部署。...在本文中,来自快手异构计算团队的研究者分享了如何在 GPU 上实现基于 Transformer 架构的 AI 模型的极限加速,介绍了算子融合重构、混合精度量化、先进内存管理、Input Padding...然而,Transformer 架构对计算和存储有着较高要求,使得很多 AI 模型在 GPU 上的大规模部署受到限制。...如何针对 Transformer 模型结构特点,结合 GPU 硬件特性充分释放 GPU 并行计算的能力,对于实现 Transformer 的极致加速至关重要。...根据不同异构器件的特点,研发包括 FPGA、ASIC、CPU、GPU 等的混合计算平台和解决方案,为快手各业务部门提供强大、高效的计算系统。

    1.7K10

    Github 项目推荐 | Windows 10上的 GPU 加速深度学习工具

    有很多工具能够帮助开发者在 Linux 和 Mac 上构建深度学习环境(比如 Tensorflow,不幸的是,TensorFlow 无法在 Windows 上轻松安装),但是很少人关注如何在 Win10...大多数人关注的是如何让深度学习框架运行在 Win10 设备的 Ubuntu VM 上,这不是最优的解决方案。...如果开发者必须在 Win10 上运行深度学习设置,那么这些信息会对你有用。...5.2.0) [no Tensorflow support] with MKL 2018.0.3 一个 Python 发行版,它为我们提供了 NumPy,SciPy 和其他科学库 MKL 用于线性代数运算的 CPU...Keras 2.1.6 有三个不同的后端:Tensorflow-gpu 1.8.0,CNTK-gpu 2.5.1 和 MXNet-cuda90 1.2.0 Keras用于Tensorflow或CNTK

    1.7K20

    华为虚拟化软件在GPU上的总结

    最近测试了华为的虚拟化软件在GPU上面的情况,将遇到的一些问题总结在这里。 硬件平台及软件版本介绍: 虚拟化服务器:DP2000,相当于华为的RH 2288HV5。 GPU:NVIDIA A40。...A40比较新,在华为的服务器兼容部件里面没有查到,在超聚变的兼容部件里面可以查到。 图片 2、虚拟化软件与GPU之间的兼容性,以及推荐的GPU虚拟化软件版本。...现在华为的虚拟化安装,可以先安装一台CNA,在通过CNA上安装一个安装软件,通过web界面,给其他服务器安装CNA,以及VRM,比之前在本地电脑上运行安装工具方便很多。...2、Java版本和nvidia-is-windows软件之间存在兼容问题,目前java版本是jre-8u191-windows-i586,没有问题,nvidia-is-windows的版本是应该是2018...(最好使用第三方VNC,否则填写License服务器时,显示有问题) 2、在安装好以及填好License服务器地址,激活成功后,在关机解绑时,没有发现解绑选项,在GPU资源组,右上方的“设置中”,勾选掉

    3.1K60

    JPEG 在 GPU 上压缩性能瓶颈分析

    鉴于AI是当下最火的技术方向,GPU加速运算在这方面又有天然的优势,所以官方在介绍其性能差异时主要针对AI各个计算框架来展示其加速比。...图像压缩流程 首先来看我们的应用的计算过程,部分代码在CPU上运行,部分代码在GPU上运行。在CPU和GPU上的数据需要通过PCIE在主存和显存之间进行交换。...适当控制每卡上运行的处理流,单机配置少量的GPU卡, 尽可能的将动态分配的内存静态化,这样有利于在GPU利用率和处理时延上取得平衡。...其次GPU的物理设备不需要最好的,普通的Tesla 系列GPU的计算性能已经能满足该场景下的计算加速,在物理拓扑上最好采用GPU直连CPU的模式与物理CPU均匀分配连接。...利用当前的M40架构,在GPU加速所取得的现网时延ms(编解码部分没放到GPU上进行) 分辨率 GPU CPU docker >2000x2000 143 366 393 2000x2000~1500x1500

    5.1K31

    pycharm在进行神经网络训练时怎么利用GPU加速

    要在PyCharm中配置和使用GPU来加速神经网络的训练,分为以下步骤操作:1. 检查并配置GPU硬件首先,确保您的计算机上安装有NVIDIA GPU,并且安装了正确的CUDA驱动程序和cuDNN库。...编写针对GPU的优化代码在您的Python脚本中,使用以下代码来确保模型使用GPU进行训练:import tensorflow as tf# 检查TensorFlow是否看到GPUprint("Num...GPUs Available: ", len(tf.config.list_physical_devices('GPU')))# 配置策略以在GPU上运行操作gpus = tf.config.list_physical_devices...以下是一个使用PyTorch框架进行神经网络训练的代码示例,其中展示了如何利用GPU加速训练过程。...请确保你已经安装了PyTorch和CUDA,并且你的机器上已经安装了NVIDIA的GPU和相应的CUDA驱动。

    63610

    为什么深度学习模型在GPU上运行更快?

    引言 当前,提到深度学习,我们很自然地会想到利用GPU来提升运算效率。GPU最初是为了加速图像渲染和2D、3D图形处理而设计的。...在我们深入之前,先来理解一些基本的CUDA编程概念和术语: host:指CPU及其内存; device:指GPU及其内存; kernel:指在设备(GPU)上执行的函数; 在用CUDA编写的简单代码中,...程序在host(CPU)上运行,将数据发送至device(GPU),并启动kernel(函数)在device(GPU)上执行。...需要牢记的是,核心函数是在设备(GPU)上执行的。这意味着它使用的所有数据都应当存储在GPU的内存中。...下面是CPU和GPU在NxN矩阵乘法上的性能比较: 正如您所观察到的,随着矩阵大小的增加,矩阵乘法运算的 GPU 处理性能提升甚至更高。

    13810

    PG-Storm:让PostgreSQL在GPU上跑得更快

    在处理器内核数量和RAM带宽上,GPU有得天独厚的优势。GPU通常有成百上千的处理器内核,RAM带宽也比CPU大几倍,可以并行处理大量数值计算,因此其运算十分高效。...PG-Storm基本基于两点思想: 运行中本地GPU代码生成 异步流水线执行模式 在查询优化阶段,PG-Storm检测给定查询是否完全或部分可以在GPU上执行,而后确定该查询是否可转移。...通过GPU加速,这些异步相关切分也隐藏了一般延迟。 装载PG-Strom后,在GPU上运行SQL并不需要专门的指示。...它允许允许用户自定义PostgreSQL的扫描方式,而且提供了可以在GPU上运行的扫描/联接逻辑的其他可行方案。如果预计费用合理可行,任务管理器则放入自定义扫描节点,而非内置查询执行逻辑。...在此次测试中,所有相关的内部关系都可以一次性地加载到GPU RAM上,预聚集大大减小了CPU需要处理行数。测试代码详情可以查看这里。

    1.8K60
    领券