C.120: Use class hierarchies to represent concepts with inherent hierarchical structure (only)
C.129: When designing a class hierarchy, distinguish between implementation inheritance and interface inheritance
史莱雅·戈亚尔, 萨普塔希·普尔 卡亚萨, 泰勒·菲利普斯, 罗布·凯普,亚历克西斯·布里特
An array of derived classes can implicitly "decay" to a pointer to a base class with potential disastrous results.
C.10: Prefer concrete types over class hierarchies
机器之心编译 来源:Wired、OpenAI等 机器之心编译 参与:黄小天、路雪、刘晓坤 虽然只有 17 岁,但是 Gunn High School 学生 Kevin Frans 已经有 7 年多的编
OpenAI 成立近两年,发表了大量研究论文,而这周四的一篇论文却与众不同:其第一作者是名高中生。这位少年英才叫 Kevin Frans,就读于 Henry M. Gunn 高中,现为 OpenAI 实习生。两年前,他 15 岁,首次训练神经网络,一个语音或人脸识别系统。受到 Atari 游戏和 AlphaGo 有关报道的启发,他阅读了大量论文,并部分地复现了它们。「我喜欢让计算机去实现看起来不可能的事。」Frans 说,脸上泛着笑容。他创作过一个交互式网页,可以用漫画风格为线条素描自动上色。
不用多说,PowerBI的用户都知道本书是世界范围对PowerBI DAX解释最权威的著作。目前在微软书店(www.microsoftpressstore.com)正式发售。
Multi-Level Discovery of Deep Options Abstract Augmenting an agent’s control with useful higher-level behaviors called optionscan greatly reduce the sample complexity of reinforcement learning, but manually designing options is infeasible in high-dimensi
Deep neural networks have been shown to be very successful at learning feature hierarchies in supervised learning tasks. Generative models, on the other hand, have benefited less from hi- erarchical models with multiple layers of latent variables. In this paper, we prove that certain classes of hierarchical latent variable models do not take advantage of the hierarchical structure when trained with existing variational methods, and provide some limitations on the kind of fea- tures existing models can learn. Finally we pro- pose an alternative flat architecture that learns meaningful and disentangled features on natural images.
The recently developed variational autoencoders (VAEs) have proved to be an effective confluence of the rich repre- sentational power of neural networks with Bayesian meth- ods. However, most work on VAEs use a rather simple prior over the latent variables such as standard normal distribu- tion, thereby restricting its applications to relatively sim- ple phenomena. In this work, we propose hierarchical non- parametric variational autoencoders, which combines tree- structured Bayesian nonparametric priors with VAEs, to en- able infinite flexibility of the latent representation space. Both the neural parameters and Bayesian priors are learned jointly using tailored variational inference. The resulting model induces a hierarchical structure of latent semantic concepts underlying the data corpus, and infers accurate representations of data instances. We apply our model in video representation learning. Our method is able to dis- cover highly interpretable activity hierarchies, and obtain improved clustering accuracy and generalization capacity based on the learned rich representations.
Cgroups 是 control groups 的缩写,是 Linux 内核提供的一种可以限制、记录、隔离进程组(process groups)所使用的物理资源(如:cpu,memory,IO 等等)的机制。最初由 google 的工程师提出,后来被整合进 Linux 内核。Cgroups 也是 LXC 为实现虚拟化所使用的资源管理手段,可以说没有 cgroups 就没有 LXC。
这里的例子仅仅还是jdk是模块化的,但是工程代码还没有模块化。等所有依赖都模块化了,可以重新试验一下。
RCNN(Region with CNN features)[1]算法发表在2014年CVPR的经典paper:《Rich feature hierarchies for Accurate Object Detection and Segmentation》中,这篇文章是目标检测领域的里程碑式的论文,首次提出使用卷积神经网络(Convolutional Neural Networks, CNNs)处理目标检测(Object Detetion)的问题。
本书并不陌生,它已经是该书的第二版了,第一版是针对当年在 Excel 中的 Power Pivot 编写的模式。而本书则是以 PowerBI 作为实践载体来编写的。
Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat individual objects and compositions of objects uniformly.
聚类特征(Clustering Feature,简称CF)是一种用来表征聚类特征的数据格式,他由以下三部分组成:簇中所含样本点的个数(用 N N N来表示)、簇中所有点的各项属性的线性和(用 L S LS LS来表示)以及簇中所有点的各项属性的平方和(用 S S SS SS来表示),假设存在簇 C = { ( 1 , 2 ) , ( 2 , 1 ) , ( 1 , 1 ) , ( 2 , 2 ) } C=\{\left(1,2\right),\left(2,1\right),\left(1,1\right),\left(2,2\right)\} C={ (1,2),(2,1),(1,1),(2,2)},那么 N = 4 N=4 N=4, L S = ( { 1 + 2 + 1 + 2 } , { 2 + 1 + 1 + 2 } ) = ( 6 , 6 ) LS=\left(\{1+2+1+2\},\{2+1+1+2\}\right)=\left(6,6\right) LS=({ 1+2+1+2},{ 2+1+1+2})=(6,6), S S = 1 2 + 2 2 + 1 2 + 2 2 + 2 2 + 1 2 + 1 2 + 2 2 = 20 SS=1^2+2^2+1^2+2^2+2^2+1^2+1^2+2^2=20 SS=12+22+12+22+22+12+12+22=20。因此这种结构具有很好的线性性质,即当需要合并两个簇时,总的聚类特性可以简单的通过两者聚类特性之和来表示。有了上述信息之后,就可以计算簇的质心以及方差(或标准差),其中方差可以用来表征簇的半径,还可以间接的计算两个簇质心之间的距离。 聚类特征树(Clustering Feature Tree,简称CF-Tree)是一棵高度平衡的树,这棵树由根节点、内部节点(或者称为非叶节点)以及叶节点,其中每个非叶节点和根节点都由形如 [ C F i , c h i l d i ] [CF_{i},child_{i}] [CFi,childi]的项组成, c h i l d i child_i childi代表第 i i i个节点的子节点,而叶节点(或者称为簇)通过 C F i CF_i CFi组成的序列来表示每个簇的特征,下图(图1)所示是一个CF-Tree实例。
描述: 将一个类的接口变换成客户端锁期待的另一种接口,从而是原本因接口欧不匹配而无法再一起工作的两个类能够在一起工作 。
Yoshua Bengio近日发表文章,展望深度学习的未来。原文如下: The Promise of Deep Learning Humans have long dreamed of creating machines that think. More than 100 years before the first programmable computer was built, inventors wondered whether devices made of rods and gears might
先进行区域生成(region proposal,RP)(一个有可能包含待检物体的预选框),再通过卷积神经网络进行样本分类。
今天小编推荐一个谷歌插件,来解决这个问题。划重点,完全免费,让你下载文献再也不用求人了。
C.137: Use virtual bases to avoid overly general base classes
Visual Studio,Office,Delphi,Eclipse等等都有插件式的框架。Eclipse将插件模式发挥到了及至,因为他是开源的,开发社区开发出了不少极具商业价值的插件了。微软推行的VSIP (Visual Studio Industry Partners)合作伙伴计划,以及合作伙伴开发出的800多种产品,加上更多的整个微软平台上的合作伙伴,这一庞大的产业生态环境,只有Eclipse平台可以与他相提并论。现在Mono.Addins也是一个插件式的框架,Mono.Addins与Vi
首先我们来理解下"部分-整体",在现实生活中的这种关系"部分-整体"也很常见。比如:学院与学校,分公司与总公司,书与书柜等等。
Microsoft Foundation Classes (MFC) The C++ class library that Microsoft provides with its C++ compiler to assist programmers in creating Windows-based applications. MFC hides the fundamental Windows API in class hierarchies so that programmers can write a Windows-based application without needing to know the details of the native Windows API. Active Template Library (ATL) A C++ template library used to create ActiveX servers and other Component Object Model (COM) objects. ActiveX controls created with ATL are generally smaller and faster than those created with the Microsoft Foundation Classes. Component Object Model (COM) An open architecture for cross-platform development of client/server applications. It is based on object-oriented technology as agreed upon by Digital Equipment Corporation and Microsoft Corporation. COM defines the interface, similar to an abstract base class, IUnknown, from which all COM-compatible classes are derived.
今日您已经可以在微软书店或亚马逊正式购买到DAX终极指南第二版英文原版电子版。全称为:《Definitive Guide to DAX, The: Business intelligence for Microsoft Power BI, SQL Server Analysis Services, and Excel, 2nd Edition》。
枚举(Enumerations)是一种语言特性,对于建模有限的实体集来说特别有用。一个经典的例子是将工作日建模为一个枚举:每个七天都有一个值。Scala和许多其他语言一样,提供了一种表示枚举的方法:
Linux 命名空间是一种隔离机制,允许将全局系统资源划分为多个独立的、相互隔离的部分,使得在不同的命名空间中运行的进程感知不到其他命名空间的存在。从而实现了对进程、网络、文件系统、IPC(进程间通信)等资源的隔离,减少了潜在的安全风险。例如,在容器中运行应用程序可以避免对主机系统的直接影响,从而提高了系统的安全性。
https://www.zhihu.com/question/35887527/answer/147832196
It is easy to get confused about which variable is used. Can cause maintenance problems.
LEARNING ACTIONABLE REPRESENTATIONS WITH GOAL-CONDITIONED POLICIES
AI 科技评论曾编译了《干货分享 | 深度学习零基础进阶大法!》系列,相信读者一定对深度学习的历史有了一个基本了解,其基本的模型架构(CNN/RNN/LSTM)与深度学习如何应用在图片和语音识别上肯定也不在话下了。今天这一部分,我们将通过新一批论文,让你对深度学习在不同领域的运用有个清晰的了解。由于第三部分的论文开始向细化方向延展,因此你可以根据自己的研究方向酌情进行选择。AI 科技评论对每篇论文都增加了补充介绍。这一弹主要从自然语言处理以及对象检测两方面的应用进行介绍。 本文编译于外媒 github,
吴恩达老师课程原地址: https://mooc.study.163.com/smartSpec/detail/1001319001.htm
The W3C OWL 2 Web Ontology Language (OWL) is a Semantic Web language designed to represent rich and complex knowledge about things, groups of things, and relations between things. OWL is a computational logic-based language such that knowledge expressed in OWL can be reasoned with by computer programs either to verify the consistency of that knowledge or to make implicit knowledge explicit. OWL documents, known as ontologies, can be published in the World Wide Web and may refer to or be referred from other OWL ontologies. OWL is part of the W3C's Semantic Web technology stack, which includes RDF [RDF Concepts] and SPARQL [SPARQL].
层次强化学习(HRL)中的自动Skill Discovery思路 文:CreateAMind陈七山 1前言:关于层次强化学习(HRL) 如何解决强化学习在反馈稀疏时的困难,一直是学界重点研究的方向。一种思路是采用层次化的思想 (Hierarchical Reinforcement Learning,简称HRL)。这并不是一个新兴的方向,20年前就有相关论文发表[1][2]。但由于始终没有达到理想的效果,所以最近各大机构如OpenAI, DeepMind, UCB都在进行这方面的研究,NIPS2017也有一个
我们来理解一下: 面向对象遇上面向函数。 对于Scala而言, 二者的特性兼而有之。为最大化代码重用和可扩展性构建优雅的类层次结构,使用高阶函数实现它们的行为。是 Scala所提倡的。
本文的地址为:http://tiewei.github.io/devops/howto-use-cgroup/
InnateDB通过整合来自几个主要公开数据库的互作和通路信息,整合了全人类、小鼠和牛的interactomes(相互作用组,一个相互作用组是一个特定细胞内的一整套分子相互作用),但其目的是通过人工管理获得对先天免疫相互作用组的更好的覆盖。
InnateDB(http://www.innatedb.com)数据资源用于促进对哺乳动物(人、小鼠和牛)先天免疫反应系统水平的调查研究。InnateDB目的是提供一个有关基因、蛋白质,特别是哺乳动物先天免疫的相互作用和信号反应的人工辅助知识库。
领取专属 10元无门槛券
手把手带您无忧上云