首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Nucleic Acids Res. | scHumanNet:用于研究疾病基因细胞类型特异性的单细胞网络分析平台

本文介绍由哈佛医学院的Martin Hemberg和韩国延世大学生命科学与生物技术学院生物技术系的Insuk Lee共同通讯发表在Nucleic Acids Research的研究成果:单细胞生物学面临的一个主要挑战是识别细胞类型特异性基因功能,这可能会大大提高精准医学的水平。基因的差异表达分析是一种流行但不充分的研究方法,需要补充与细胞类型相关的功能。因此,作者提出了单细胞网络分析平台scHumanNet,用于解决人类不同基因功能的细胞异质性。scHumanNet是基于HumanNet参考相互作用组构建细胞类型特异性基因网络(CGN), 它在单细胞转录组数据上构建的CGN比其他方法显示出更高的细胞环境功能相关性。此外,基于跨细胞类型网络紧致性的基因信号的细胞反褶积揭示了与T细胞相关的乳腺癌预后标志物。scHumanNet还可以利用CGN的中心性对与特定细胞类型相关的基因进行优先排序,并确定CGN在疾病和健康状况之间的差异中心。作者通过揭示乳腺癌预后基因GITR的T细胞特异性功能效应,以及抑制神经元特异性自闭症谱系障碍基因的功能缺陷,证明了scHumanNet的有效性。

02
您找到你想要的搜索结果了吗?
是的
没有找到

Dictys:单细胞多组学分析发育连续性的动态基因调控网络

本文介绍由哈佛医学院的Luca Pinello通讯预印在bioRxiv的研究成果:基因调控网络(GRN)是细胞功能和特性的关键决定因素,并且会在发育和疾病期间动态重组。尽管经过了几十年的发展,GRN推理仍然面临诸多挑战,如动态重组、因果推理、反馈回路建模和上下文特异性。为了解决这些问题,作者开发了一种动态GRN推断和分析方法Dictys,该方法利用了染色质可及性、基因表达的多组学单细胞分析、上下文特异性转录因子(TF)足迹、随机过程网络和scRNA-seq读取计数的高效概率模型。Dictys提高了GRN重建的准确性和再现性,并能够跨发育环境对特定上下文和动态GRN进行推断和比较分析。Dictys通过细胞类型特异性和动态GRN进行网络分析,恢复了人类血液和小鼠皮肤发育的独特见解。其动态网络可视化可以对发育驱动因子TF及其调控目标进行时间分辨的发现和研究。同时,Dictys是一个免费、开源和用户友好的Python包。

02

从单细胞基因表达数据推断细胞特异性基因调控网络

本文介绍由佐治亚理工学院计算科学与工程系的Xiuwei Zhang等人的研究成果。基因调控网络(GRN)可以被视为细胞的另一个特征,有助于发现每个细胞的独特性。然而,目前仍然缺少重建细胞特异性GRN的方法。作者提出了一种从单细胞基因表达数据推断细胞特异性GRN的方法(简写为CeSpGRN)。CeSpGRN使用高斯加权核,从发育过程中的细胞以及该细胞上游和下游细胞的基因表达谱中构建给定细胞的GRN。CeSpGRN可用于推断任何轨迹或簇结构的细胞群中的细胞特异性GRN,并且不需要额外输入细胞的时间信息。经实验证明,CeSpGRN在重建每个细胞的GRN以及检测细胞间的相互调节作用方面性能优越。

02

Nature neuroscience:大鼠功能连接分析的共识方案

动物模型中的无任务功能连接提供了一个实验框架,以检查受控条件下的连接现象,并允许与在侵入性或终末操作下收集的数据模式进行比较。目前,动物的获取采用不同的方案和分析,这妨碍了结果的比较和整合。在这里,我们介绍了在20个中心测试的大鼠功能磁共振成像采集协议StandardRat。为了优化采集和处理参数,我们首先收集了来自46个中心的65个大鼠功能成像数据集。我们开发了一个可重复的流程来分析不同方案获得的大鼠数据,并确定了与跨中心功能连接稳健检测相关的实验和处理参数。我们表明,相对于之前的采集,标准化协议增强了生物学上合理的功能连接模式。本文描述的方案和处理流程与神经影像社区公开共享,以促进互操作性和合作,以应对神经科学中最重要的挑战。

02

Nature Genetics | 基于人工智能神经网络的基因组解读系统Nvwa并揭示细胞命运决定共性规律

本文介绍由浙江大学基础医学院的郭国骥、韩晓平和良渚实验室的王晶晶共同通讯发表在 Nature Genetics 的研究成果:目前研究人员在生成和分析基因组方面做了大量努力,但大多数物种仍缺乏预测基因调控和细胞命运决定的遗传模型。在该研究中,作者利用自主构建的高通量单细胞测序平台Microwell-seq绘制了斑马鱼、果蝇和蚯蚓的全身单细胞转录组图谱,并探究了八种代表性的后生动物细胞类型的跨物种可比性,揭示了脊椎动物细胞类型保守的调控程序。作者开发了一种基于深度学习的模型Nvwa,用于在单细胞分辨率下预测基因表达和识别调控序列。作者还系统地比较了细胞类型特异性转录因子,以揭示脊椎动物和无脊椎动物细胞类型的保守遗传调控。该工作有助于为研究不同生物系统的调控语法提供宝贵的资源和新的策略。

02

“站长,怎么判断是不是链特异性建库呢?”

结合小站之前的教程这一步应该插在STAR Mapping之后从零到壹:10元~Mapping神器STAR的安装及用随便选一个样本,在样本文件夹里找到bam文件,然后用samtools index建立baibam与bai要在一个目录下,载入到IGV软件中,就是视频那个样子啦。位置信息是chr12:123,406,542-123,416,558首先看是不是链特异性,右键选color alignments by first-of-pair strand如视频那样,红蓝分布,就是链特异性再看是什么样的链特异性在链特异性那个样本右键选color alignments by read strand鼠标放在红或者蓝的read上,看信息。显示first of pair那个read的箭头方向与基因的方向相反,这就提示是dUTP建库的方法。知道这些有啥用呢?在STAR运行结束后的ReadsPerGene.out.tab文件中非链特异性的要选第二列那个数而dUTP链特异性建库要选第四列那个数所以批量处理counts数教程中"站长,Mapping之后counts怎么合并成一个表?"df.use <- data.frame(v1 = df.read 这句代码中V4就是第四列,选择这个是针对dUTP链特异性建库测序的,如果是非链特异性建库图中那个位置应该改成V2就可以啦~~

01

【小技巧】如何测序数据是否为链特异性建库呢?

结合小站之前的教程这一步应该插在STAR Mapping之后从零到壹:10元~Mapping神器STAR的安装及用随便选一个样本,在样本文件夹里找到bam文件,然后用samtools index建立baibam与bai要在一个目录下,载入到IGV软件中,就是视频那个样子啦。位置信息是chr12:123,406,542-123,416,558首先看是不是链特异性,右键选color alignments by first-of-pair strand如视频那样,红蓝分布,就是链特异性再看是什么样的链特异性在链特异性那个样本右键选color alignments by read strand鼠标放在红或者蓝的read上,看信息。显示first of pair那个read的箭头方向与基因的方向相反,这就提示是dUTP建库的方法。知道这些有啥用呢?在STAR运行结束后的ReadsPerGene.out.tab文件中非链特异性的要选第二列那个数而dUTP链特异性建库要选第四列那个数所以批量处理counts数教程中"站长,Mapping之后counts怎么合并成一个表?"df.use <- data.frame(v1 = df.read 这句代码中V4就是第四列,选择这个是针对dUTP链特异性建库测序的,如果是非链特异性建库图中那个位置应该改成V2就可以啦~~

02

【免费】站长线下课:用STAR去Mapping~~~~

结合小站之前的教程这一步应该插在STAR Mapping之后从零到壹:10元~Mapping神器STAR的安装及用随便选一个样本,在样本文件夹里找到bam文件,然后用samtools index建立baibam与bai要在一个目录下,载入到IGV软件中,就是视频那个样子啦。位置信息是chr12:123,406,542-123,416,558首先看是不是链特异性,右键选color alignments by first-of-pair strand如视频那样,红蓝分布,就是链特异性再看是什么样的链特异性在链特异性那个样本右键选color alignments by read strand鼠标放在红或者蓝的read上,看信息。显示first of pair那个read的箭头方向与基因的方向相反,这就提示是dUTP建库的方法。知道这些有啥用呢?在STAR运行结束后的ReadsPerGene.out.tab文件中非链特异性的要选第二列那个数而dUTP链特异性建库要选第四列那个数所以批量处理counts数教程中"站长,Mapping之后counts怎么合并成一个表?"df.use <- data.frame(v1 = df.read 这句代码中V4就是第四列,选择这个是针对dUTP链特异性建库测序的,如果是非链特异性建库图中那个位置应该改成V2就可以啦~~

02

Trends in Neurosciences:基于信息的无创经颅脑刺激方法

认知神经科学的进展依赖于方法学的发展,以增加有关脑功能知识的特异性。例如,在功能神经成像领域,当前的趋势是研究大脑区域所携带的信息类型,而不是简单地比较任务操作所引起的激活水平。在这种情况下,非侵入性经颅脑刺激 (noninvasive transcranial brain stimulation, NTBS) 在认知功能研究中的传统应用可能显得粗糙和过时。然而,在其众多参数中,通过与行为操作相结合,NTBS方案可以达到成像技术的特异性。在本文中,我们回顾了在基础科学和临床环境中实现这一目标的不同范例,并遵循基于信息的方法的一般原理。本文发表在Trends in Neurosciences杂志。

02

Nat. Biotechnol. | DestVI:识别空间转录组数据中细胞类型的连续性

本文介绍由以色列魏茨曼科学研究所免疫学系的Ido Amit和美国加州大学伯克利分校电气工程与计算机科学系的Nir Yosef共同通讯发表在 Nature Biotechnology 的研究成果:大多数空间转录组学技术都受到其分辨率的限制,虽然与单细胞RNA测序的联合分析可以缓解这一问题,但目前的方法仅限于评估离散的细胞类型,揭示每个位点内细胞类型的比例。为了识别同一类型细胞内转录组的连续变异,本文作者利用变分推理开发了空间转录组图谱的反卷积模型(DestVI)。经实验证明,DestVI在估计每个位点内每种细胞类型的基因表达方面优于现有的方法,DestVI还可以为实验中的细胞组织提供高分辨率、准确的空间特征,并识别不同组织区域或不同条件之间基因表达的细胞类型特异性变化。

01

双特异性抗体在急性髓细胞白血病治疗中的应用

双特异性抗体由两种或多种抗体的抗原识别片段组成,使其可以同时与靶向细胞以及免疫效应细胞结合。早在20世纪80年代,科学家们就对免疫效应细胞靶向特定癌症相关抗原的能力以及其在癌症治疗方面的应用前景表现出了浓厚兴趣。近来迅猛发展的医疗技术使得重组蛋白类生物制品的工程设计,开发和生产变得更加容易,再加上制药行业的需求,极大地推动了双特异性抗体的研究。今天,已经有超过50种不同类型的双特异性抗体正在进行临床试验。众多双特异性抗体技术平台正在接受检验,其中包括单链可变片段(single-chain variable fragment, scFv),串联双抗体(tandem diabodies, TandAb),双特异性T细胞桥接抗体(bispecific T-cell engagers, BiTE),双亲和力重新定向抗体(dual affinity retargeting antibodies, DART)和双特异性杀伤细胞桥接抗体(Bispecific killer cell engagers, BiKEs) (图1)。在癌症治疗中,目前正在开发的双特异性抗体要么能够募集并重定向免疫效应细胞来杀伤肿瘤细胞或通过阻断肿瘤表面配体与受体的结合来抑制不同的肿瘤相关信号通路。目前最常用的策略是,在双特异性抗体上设计一个片段与肿瘤细胞上的抗原结合,而另一个片段能够与免疫效应细胞结合(经常是通过结合CD3分子来连接T细胞)。这就使得双特异性抗体能够重定向免疫效应细胞到肿瘤细胞周围并且不依赖于主要组织相容性复合体(MHC),从而可以避免因为肿瘤细胞下调MHC而导致的免疫逃逸(图2)。取决于双特异性抗体重定向的效应免疫细胞的类型,靶细胞,也就是肿瘤细胞,通常被颗粒酶B/穿孔素介导的或者是抗体依赖性细胞介导的细胞毒性作用(antibody-dependent cell-mediated cytotoxicity, ADCC)杀死。

02

Neurology:早期、未用药帕金森病存在特异的白质连接

神经影像研究认为PD(帕金森症)是一种网络失连接综合征,并可通过网络神经科学方法进行研究。网络神经科学将大脑从结构与功能上看作大尺度神经网络。该方法假设脑区之间的解剖连接与功能交互的异常,会引起网络功能的障碍。近期基于图论的研究发现,早期PD的功能连接组受到模块化破坏,虽然白质连接发生微小改变,但结构组织仍旧相对保留。因此,重要的是我们需要了解众所周知的解剖网络的固有变异性是否构成了早期PD中未检测到的结构异常的基础。此外,PD的病理和症状异质性可能影响发现一致的疾病相关结构变化的能力,尤其是在PD疾病的早期阶段。

02

【连载】癌症中的嵌合RNA (Chimeric RNA) (二)

癌症基因组项目中的米特曼染色体畸变数据库和基因融合数据库等数据库发现了大量在癌症中出现的嵌合RNA。通过癌症基因组图谱计划(TCGA)这样的大型联盟的努力,积累了更多的RNA序列数据集。因此,越来越多的嵌合RNA被鉴定出来。然而,由于嵌合RNA在正常生理中也存在,其在癌症样本中也许不具有癌症特异性。因此,筛选出在正常组织/细胞中也表达的嵌合RNA对于发现癌症特异的嵌合RNA是十分重要的,对于新发现的嵌合RNA,应该在不同的癌症和正常样本中进行仔细验证和量化。在这一章中,我们首先总结了在癌症和正常生理组织中表达的各种类型的嵌合RNA,然后从生物信息学和生物学角度提供一个嵌合RNA的定义并用此去探索新的嵌合RNA,研究它们与临床参数的关系。

01

利用fMRI验证运动执行和想象期间辅助运动区fNIRS激活

与fMRI相比,因fNIRS对研究神经反馈(NFB)具有一些优点,使得该技术成为研究者感兴趣的对象。使用fNIRS研究NFB的先决条件是能测量到感兴趣的大脑区域信号。本研究关注的是辅助运动区(SMA)。共招募16名健康老年人被试完成分离的连续波(CW)fNIRS和fMRI检测。任务包括手部运动执行和运动想象(MI)以及想象全身运动。个人的解剖数据用来(i)为fMRI分析定位感兴趣的区域,(ii)从fNIRS通道对应的皮层区域提取fMRI BOLD响应,(iii)选择fNIRS通道。分析了氧和血红蛋白(Δ[HbO])和脱氧血红蛋白浓度变化(Δ[HbR])。结果发现了不同MI任务间微小的变化,表明对于全身MI运动和手部MI运动Δ[HbR]更为特别。基于个人解剖结构的fNIRS通道选择并没有改善结果。总之,该研究表明,就空间特异性和任务敏感性而言,使用CW-fNIRS能可靠地测量SMA激活。

03

单细胞RNA-seq分析小鼠肺动脉高压内皮细胞

结果:小鼠特殊造模进行单细胞数据分析,并对不同内皮细胞进行细分得到相应的七个主要肺内皮亚型(动脉,静脉,毛细血管A,毛细血管B,淋巴管,增殖和“Sftp”) 。基于SCrna-seq和BulkRNA-seq两种分析得出抗原加工和呈递该通路中在肺高压造模小鼠的血管相关亚群细胞的特异性。后续确定毛细内皮B亚群对于细胞凋亡、迁移和血管生成基因有关也侧面证明了该亚群在肺高压疾病中的特殊性确定了一些特异性基因(Aqp1,Cav1,Bmpr2, Eng)并推断在人与大鼠中是否也具有特异性。进一步分析血管相关亚群探究确定了一个动静脉轴的差异变化确定了某些基因(Sgk1, Cd34, Sparc, Sparcl1)在疾病中对于动静脉轴的一个影响作用。

02

细胞免疫疗法TCR-T和空间VDJ测序

人类肿瘤抗原主要可分为两类——肿瘤特异性抗原(例如,新抗原和病毒抗原)和肿瘤相关抗原(例如,癌症/睾丸(CT)抗原、过表达抗原和分化抗原)。尽管TCR-T细胞可以靶向所有肿瘤抗原,但迄今为止确定的具有足够安全性和有效性的靶点数量仍然有限。选择合适的TCR-T细胞治疗靶抗原的首要考虑应该是抗原的高特异性。通常选择在肿瘤中高表达但在正常组织中低水平表达的靶抗原来限制任何潜在的脱靶效应和由破坏表达靶抗原的正常组织引起的剂量限制毒性。迄今为止,大多数TCR-T细胞疗法的临床试验都针对CT抗原和病毒抗原,其中纽约食管鳞状细胞癌1(NY-ESO-1)是最常针对的,占迄今为止试验的37%。

02

Nat. Commun. | 用深度学习预测SARS-CoV-2的进化

今天为大家介绍的是来自Shiwei Sun, Peter Pak-Hang Cheung和 Xin Gao团队的一篇与SARS-CoV-2相关的论文。SARS-CoV-2的持续演变对公共卫生构成了重大威胁。由于庞大的序列空间,了解潜在的抗原变化具有重要意义,但也具有挑战性。在这里,作者引入了机器学习引导的抗原进化预测(MLAEP)方法,它结合了结构建模、多任务学习和遗传算法,通过体外定向进化模拟来预测病毒的适应性景观并探索抗原进化。通过分析现有的SARS-CoV-2变异,MLAEP准确地推断了抗原进化轨迹上的变异顺序,与相应的采样时间相关联。作者的方法在免疫功能受损的COVID-19患者和新出现的变异(如XBB1.5)中识别出了新的突变。

02

JAMA Psychiatry:六种精神疾病中皮层厚度的虚拟组织学及共同的神经生物学过程

《本文同步发布于“脑之说”微信公众号,欢迎搜索关注~~》 一、重要性   大规模的神经影像方面的研究已经揭示了多种精神疾病群体中皮层厚度与健康人群存在差异。但是,这些差异背后的潜在神经生物学过程尚不明确。 二、研究目标   确定6种精神疾病中病例组和健康对照组之间皮层厚度的群体差异在神经生物学上的相关性,这6种精神疾病包括注意力缺陷多动障碍(ADHD)、自闭症谱系障碍(ASD)、双相情感障碍(BD)、重度抑郁症(MDD)、强迫症(OCD)和精神分裂症(SCZ)。 三、研究对象   该研究中的被试者来自于ENAGMA consortium (The Enhancing NeuroImaging Genetics through Meta-Analysis)中的145个队列,横跨6种常见的精神疾病,每种疾病组及其对照组的总样本数量如下:注意力缺陷多动障碍组(ADHD)及其对照组:1841和1602;自闭症谱系障碍组(ASD)及其对照组:1748和1770;双相情感障碍组(BD)及其对照组:1547和3405;重度抑郁症组(MDD)及其对照组:2658和3572;强迫症组(OCD)及其对照组:2266和2007;精神分裂症组(SCZ)及其对照组:1688和3244。 四、研究方法 1. 皮层厚度的组间差异   对来自145个队列的被试者进行T1加权像磁共振扫描,并用FreeSufer软件计算基于Desikan-Killiany脑区模板的34个区域的皮层厚度,在每个队列中,分别以34个不同的脑区的皮层厚度为因变量,年龄、年龄的平方、性别和一些中心特异性的变量为协变量,建立多个多重线性回归模型,寻找每个队列中疾病组与对照组皮层厚度的组间差异;然后将145个队列的被试者按照疾病类别进行荟萃分析,采用“metafor”R包中的反向方差加权随机效应模型寻找每种疾病组与其对照组间在皮层厚度上的组间差异。 2. 磁共振成像上和遗传上的相似性   对于每种疾病病例组与对照组在皮层厚度上的组间差异,首先使用R包WGCNA中的biweight midcorrelation来分析这些组间差异的相关性,得到两两疾病间的相关性矩阵;从Brainstorm consortium获得这6种精神疾病在遗传上两两关联性数据;最后使用“vegan”R包中的Mantel test来检验皮质厚度组间差异的相关性矩阵与遗传相关性矩阵的相似性,以此评估这6种精神疾病在磁共振成像上和遗传上的相似性。 3. 虚拟组织学   虚拟组织学是一种把MRI来源的数据(比如疾病与对照组组间差异脑区)与特定脑区的细胞特异性表达的数据关联起来的一种方法。从Allen Human Brain Altas获取脑组织基因表达的数据并按照Desikan-Killiany脑区模板对应到相应脑区,此数据来源于6个捐赠者,年龄从25到57岁,经过两个阶段的过滤后,剩下2511个基因;接着使用从小鼠海马和大脑S1区域获得的单细胞测序数据将过滤后保留的基因归类到9种细胞(CA1锥体细胞、S1锥体细胞、中间神经元细胞、星形胶质细胞、小胶质细胞、少突胶质细胞、壁细胞、内皮细胞和上皮细胞);最后在34个脑区中,分别将每种细胞特异性基因表达谱与每个脑区的MRI数据(皮层厚度差异)进行关联,生成每个细胞类型与34个脑区的相关系数的分布。 4. 共表达分析   对6种疾病间共同的皮层厚度差异进行主成分分析,提取第一个主成分与细胞特异性基因的表达数据进行biweight midcorrelation分析,对统计结果进行FDR(FalseDiscovery Rate)校正,提取P<0.05的基因作为种子基因,基因表达数据来源于5个数据库 (AHBA, BrainCloud, Brain eQTL Almanac [Braineac], Genotype Tissue Expression [GTEx],BrainSpan),共534个捐赠者,年龄范围从0到102,共包括16245个基因的表达数据。每次分别以每个种子基因表达量为因变量,另一个基因的表达量为自变量,年龄和性别作为固定效应,捐赠者来源作为随机效应,构建线性混合模型分析两两基因间表达间的关联,每个种子基因取与其表达正相关的上0.1%基因构建共表达网络 5. 基因轨迹聚类   使用来源于BrainSpan Altas的数据根据基因表达的时空模式对共表达网络的基因进行聚类,聚类方法使用“TMixClust”R包中的光滑样条非参数混合模型进行聚类 6. 基因功能富集分析   使用“clusterProfiler”R包对共表达基因进行GO(Gene Ontology)和KEGG (Kyoto Encyclopedia of Genes and Genomes)的通路富集分析,每个通路基因数目最少设置

00
领券