k近邻算法的思想了,最近邻算法是k近邻算法k=1时的一种特殊情况。 k近邻算法简称kNN算法,由Thomas等人在1967年提出[1]。 基本概念 确定一个样本所属类别的一种最简单的方法是直接比较它和所有训练样本的相似度,然后将其归类的最相似的样本所属的那个类,这是一种模板匹配的思想。下图6.1是使用k近邻思想进行分类的一个例子: ? 上面的例子是二分类的情况,我们可以推广到多类,k近邻算法天然支持多类分类问题。 预测算法 k近邻算法没有求解模型参数的训练过程,参数k由人工指定,它在预测时才会计算待预测样本与训练样本的距离。 如果看k=1,k近邻算法退化成最近邻算法。 k近邻算法实现简单,缺点是当训练样本数大、特征向量维数很高时计算复杂度高。
k近邻算法的思想了,最近邻算法是k近邻算法k=1时的一种特殊情况。 k近邻算法简称kNN算法,由Thomas等人在1967年提出[1]。 上面的例子是二分类的情况,我们可以推广到多类,k近邻算法天然支持多类分类问题。 预测算法 k近邻算法没有求解模型参数的训练过程,参数k由人工指定,它在预测时才会计算待预测样本与训练样本的距离。 我们可以使用高效的部分排序算法,只找出最小的k个数;另外一种加速手段是k-d树实现快速的近邻样本查找。 一个需要解决的问题是参数k的取值。这需要根据问题和数据的特点来确定。 在实现时可以考虑样本的权重,即每个样本有不同的投票权重,这称方法称为为带权重的k近邻算法。另外还其他改进措施,如模糊k近邻算法[2]。
精美礼品等你拿!
机器学习的基本概念 本文中我们来介绍最简单的分类算法:k 近邻算法(kNN) 2. k 近邻算法 k 近邻算法是一种采用测量不同特征值之间的距离的方法对样本进行分类的算法。 他的工作原理是,存在一个样本数据集合,并且每个数据都存在分类标签,对于没有标签的新数据,将这个新数据的每个特征与样本集中的数据对应的特征进行比较,然后提取样本集中特征最相似的数据(最近邻)的分类标签。 通常来说,我们只选择样本数据集中前 k 个最相近的数据,这就是 k 近邻算法的得名,通常 k 都不大于 20,在这 k 个数据中,出现次数最多的分类就输出作为新数据的分类。 2.1. 优点 k 近邻算法具有下面三个优点: 1. 简单好用,容易理解,精度高,理论成熟,既可以用来做分类也可以用来做回归 2. 可用于数值型数据和离散型数据 3. 缺点 但是,k近邻算法也具有下面的缺点: 1. 计算复杂性高;空间复杂性高 2. 样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少) 3. 一般数值很大的时候不用这个,计算量太大 4.
K-近邻算法概述(k-Nearest Neighbor,KNN) K-近邻算法采用测量不同的特征值之间的距离方法进行分类。 输入没有标签的新数据后,将新数据每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似的数据(最近邻)的分类标签。 一般来说我们只选择样本数据集中前k个最相似的数据。 4.训练算法:此步骤不适用与K-近邻算法 5.测试算法:计算错误率。 6.使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。 2. 准备数据集 在构造完整的k-近邻算法之前,我们还需要编写一些基本的通用函数,新建KNN.py文件,新增以下代码: #!
什么是K近邻? K近邻一种非参数学习的算法,可以用在分类问题上,也可以用在回归问题上。 什么是非参数学习? 相比较而言,k近邻算法可以说是最简单,也是最容易理解的一种机器学习算法了。 K近邻算法思想? K值的选择会对k近邻算法的结果产生重大的影响。 具体怎么解释呢? 总体而言,如果k值太小,就相当于用较小的邻域中的训练实例进行预测,“学习”的近似误差会减小,缺点是“学习”的估计误差会增大,预测结果会对近邻的实例点非常敏感,如果近邻的实例点恰巧是噪声就会出错。 总体而言,在数据集一定的情况下, K近邻算法的表现如何主要取决于上面提到的三个要素:K值的选择,距离度量的方式和分类决策规则。
《机器学习实战》一书介绍的第一个算法是k-近邻算法。简单的说,k-近邻算法采用测量不同特征值之间的距离方法进行分类。 k-近邻算法实现上也比较简单,以分类任务为例,首先是准备训练样本,训练样本都存在标签,也就是我们知道样本集中每一数据与所属分类的对应关系。 输入没有标签的新数据后,将新数据的每个特征与训练样本对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,选择k个最相似的数据,这就是k-近邻算法中k的出处。 从前面的分析可以看出,k-近邻算法没有显式的训练过程,在训练阶段仅仅是把样本保存起来,训练时间开销为零,待收到测试样本后再进行处理。这个算法存在两个关键点: k值如何选择。 当然这个算法也有许多优点:精度高、对异常值不敏感、无数据输入假定。 书中给出了一个使用k-近邻算法识别手写数字的完整例子,其错误率为1.2%。这已经是很高的精度了。
K-近邻算法实现&python中k-近邻算法使用&模型评估 概述 简单地说,k近邻算法采用测量不同特征值之间的距离方法进行分类。 k-近邻算法 优点:精度高、对异常值不敏感、无数据输入假定。 缺点:计算复杂度高、空间复杂度高。 适用数据范围:数值型和标称型。 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。 一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。 train_data,train_lable) # 训练模型 grid_search.best_estimator_ # 返回最佳模型 grid_search.best_score_ # 返回精准度 归一化 最值归一化
k-近邻算法(kNN)采用测量不同特征值之间的距离方法进行分类。 使用数据范围:数值型和标称型。 优点:精度高、对异常值不敏感、无数据输入假定。 缺点:计算复杂度高、空间复杂度高。 k-近邻算法的一般流程: 收集数据。 准备数据:格式化数据格式、归一化。 分析数据。 训练算法:不适用于k-近邻算法。 测试算法:计算错误率。 使用算法。 实施步骤: 对未知类别属性的数据集中的每个点依次执行以下操作: 计算已知类别数据集中的点与当前点之间的距离; 按照距离递增次序排序; 选取与当前点距离最小的k个点; 确定前k个点所在类别的出现频率; 返回前 k个点出现频率最高的类别作为当前点的预测分类。
k-近邻算法定义 k-近邻(k-Nearest Neighbour,kNN)算法采用测量不同特征值之间的距离的方法进行分类。 用官方的话来说,所谓k近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例(也就是上面所说的k个邻居), 这k个实例的多数属于某个类,就把该输入实例分类到这个类中 (4) 确定前k个点所在类别的出现频率 (5) 返回前k个点出现频率最高的类别作为当前点的预测分类 k-近邻算法实现 下面根据以上的算法流程实现kNN算法 Python预备知识 下面说说程序中用到的一些 Python源码 classify0函数是k-近邻算法的源码实现,file2matrix函数用于从文件转给你读取数据,然后交给classify0函数进行处理。 k-近邻算法中的参数k # @return def classify0(inX, dataSet, labels, k): # ndarray.shape # the dimensions
从样本中找与预测样本距离最近的k个数据 这k个数据所属类别投票决定了预测样本的类别 距离公式: d_ab=\sqrt[n]{\sum_{i=1}^m |a_i-b_i|^n} 余弦相似度: cos\Theta
参考链接: K最近邻居的Python实现 python k近邻算法 K最近邻居(KNN) (K-Nearest Neighbors (KNN)) KNN is a supervised 预测算法计算从未知点x到数据中所有点的距离。 然后,通过增加与x的距离来对数据中的点进行排序。 通过从“ K”个最接近点预测多数标签来进行预测。 与其他机器学习算法不同,我们在执行训练测试拆分之前,对所有训练数据进行拟合和转换。 由于模型需要存储所有这些数据点以便确定它们之间的距离,因此KNN算法在处理更多数据时会变慢。 python k近邻算法
基本概念 K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中。 好的,下面我们根据k近邻的思想来给绿色圆点进行分类。 如果K=3,绿色圆点的最邻近的3个点是2个红色小三角形和1个蓝色小正方形,**少数从属于多数,**基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。 如果K=5,绿色圆点的最邻近的5个邻居是2个红色三角形和3个蓝色的正方形,**还是少数从属于多数,**基于统计的方法,判定绿色的这个待分类点属于蓝色的正方形一类。 从上面例子我们可以看出,k近邻的算法思想非常的简单,也非常的容易理解,那么我们是不是就到此结束了,该算法的原理我们也已经懂了,也知道怎么给新来的点如何进行归类,只要找到离它最近的k个实例,哪个类别最多即可
机器学习实战-2-K近邻算法 本文中介绍的机器学习中最基础的一个算法:k-近邻算法,将从如下方面展开: [pca78ghkve.jpeg] 算法概述 k近邻法(k-nearest neighbor, 简单地说,k-近邻算法就是采用不同特征值之间的距离来进行分类,算法主要特点为: 优点:精度高,对异常值不敏感,没有数据输入假定 缺点:计算复杂度高,空间复杂度高 适用数据范围:数值型和标称型(男女) 有人曾经统计过很多电影的打斗镜头和接吻镜头 工作原理 存在一个样本数据集和数据标签,知道样本和标签的对应关系 输入没有标签的数据,将新数据的每个特征与样本集中数据对应的特征进行比较 提取样本集中特征最相似数据的分类标签,只选取前k个最相似的数据, k-近邻算法中的超参数k 返回值:分类结果 """ def classify0(inX, dataSet,k): result = [] # 1、求新数据和每个原数据的距离 ] 参考资料 1、《机器学习实战》一书 2、机器学习实战教程(一):K-近邻算法(史诗级干货长文) 3、《统计学习方法》-李航老师
**k-近邻算法(kNN),**它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。 输人没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。 一般来说,我们只选择样本数据集中前 k个最相似的数据,这就是 k- 近邻算法中k的出处 , 通常k是不大于 20 的整数。 最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。 k-近邻算法的一般流程 收集数据:可以使用任何方法。 准备数据:距离计算所需要的数值,最好是结构化的数据格式。 分析数据:可以使用任何方法。 训练算法:此步驟不适用于k-近邻算法。 测试算法:计算错误率。 使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。
[img202108130815581.jpg] 目标 说明K-近邻算法的距离公式 说明K-近邻算法的超参数K值以及取值问题 说明K-近邻算法的优缺点 应用KNeighborsClassifier实现分类 了解分类算法的评估标准准确率 应用:Facebook签到位置预测 K-近邻算法(KNN) 定义 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别 我们可以利用K近邻算法的思想 [img202108130828409.png] 问题 如果取的最近的电影数量不一样?会是什么结果? k 值取值过大,样本不均衡的影响 k 值取值过小,容易受到异常点影响 结合前面的约会对象数据,分析k-近邻算法需要做怎么样的处理 无量纲化的处理 推荐 标准还 K-近邻算法数据的特征工程处理 结合前面的约会对象数据,分析K-近邻算法需要做什么样的处理 K-近邻算法API sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm
最近邻算法可以说是最简单的分类算法,其思想是将被预测的项归类为和它最相近的项相同的类。 代码如下: import math """ 此python程序用来实现最近邻算法 """ def dot_distance(dot1, dot2): # 计算两点之间的距离 return 然后就有了最近邻算法的改进--k-近邻算法。 k-近邻算法的思想与最近邻算法类似,不过,它是选择了k个与即将预测的项目最近的训练项目,然后让k个项目投票,以此判断其应该属于的类别。 [1]) return k_nearest_dots k-近邻算法存在的问题是,当某一类的数据较大时,会对该类别的预测造成过大的影响。 k-近邻算法的改进是,为不同的距离确定不同的权重。即为更小的距离,确定一个较大的权重。
它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,其中K通常是不大于20的整数。 KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 由此也说明了KNN算法的结果很大程度取决于K的选择。 接下来对KNN算法的思想总结一下:就是在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K 个数据中出现次数最多的那个分类,其算法的描述为: 1)计算测试数据与各个训练数据之间的距离; 2)按照距离的递增关系进行排序; 3)选取距离最小的K个点; 4)确定前K个点所在类别的出现频率; 5)返回前
(move centroid),得到这k个聚类中心的新位置,进行下一次迭代,直到每个聚类中心点正确分布在每个类的中心。 算法的输入有两个参数:聚类中心的数量K和一系列训练集X={x1,x2,…,xm},聚类过程如图所示: ? 伪代码如下: image.png K近邻聚类与K近邻分类 KNN聚类是非监督学习,KNN分类是监督学习 KNN聚类是迭代的过程,KNN分类不需要迭代 关于随机初始化 一个推荐的随机初始化的方法: image.png 对于K比较小(2到10),进行多次随机初始化可能会很有用,但是对于K很大(如100),也许一次K聚类就能达到较好的效果。 关于选择聚类个数K 根据肘部法则(elbow method),将K/distortion函数画出来,图像会看上去像人的胳膊肘,选择肘部的地方所表示的K值会是很好的选择。 ?
k-近邻算法是采用不同特征之间的距离方法进行分类。 ? 优点:精度高、对异常值不敏感、无数据输入假定 缺点:计算复杂度高、空间复杂度高 k-近邻算法的一般流程 (1)收集数据集:可以使用任何方法 (2)准备数据集:距离计算所需要的数值,最好是结构化的数据格式 (3)分析数据:可以使用任何方法 (4)训练数据集:此步骤不适用与k-近邻算法 (5)测试算法:计算错误率 (6)使用算法:首先需要输入样本数据和结构化输出结果,然后运行k-近邻算法判断输入数据分别属于那个分类 近邻算法 K-近邻算法的伪代码: 对未知属性集中的每个点依次执行以下操作: (1)计算已知类别数据中心的点与当前点之间的距离 (2)按照距离递增次序排序 (3)选取与当前点距离最最小的K个点 (4)确定当前 k个点所在类别的出现频率 (5)返回前k个点出现频率最高的类别作为当前点的预测分类 #K-近邻算法 def classify0(inX,dataSet,labels,k): dataSetSize
我们按照距离从小到大排序,可以找到k个距离最近的电影。假定k=3,则k个已知样本的类型里最多的类型是爱情片,因此我们预测未知电影也是爱情片。以上预测电影分类的算法就是 k -近邻算法(kNN)。 k -近邻算法的基本原理是:存在一个训练数据(每个样本都有特征和分类标签的样本集),输入没有分类标签的新样本后,依次计算新样本和各个训练样本的距离,找出最相似(最近邻)的k个已知样本,提取它们的分类标签 .]]) >>> labels array(['爱情片', '爱情片', '爱情片', '动作片', '动作片', '动作片'], dtype='<U3') 下面实现kNN算法: 先对训练数据归一化处理 dataSet -minVals normDataSet = normDataSet / ranges return normDataSet, ranges, minVals 下面是算法的核心部分 4) print("预测的分类是:", X_label) kNN算法的优点是:精度高,对异常值不敏感(与异常值的距离较远),无数据输入假定。
腾讯云神图·人脸融合通过快速精准地定位人脸关键点,将用户上传的照片与特定形象进行面部层面融合,使生成的图片同时具备用户与特定形象的外貌特征,支持单脸、多脸、选脸融合,满足不同的营销活动需求……
扫码关注腾讯云开发者
领取腾讯云代金券