首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

k-均值聚类

k-均值聚类是一种表示学习算法。k-均值聚类算法将训练集分成k个靠近彼此不同样本聚类。因此我们可以认为该算法提供了k维的one-hot编码向量h以表示输入x。...当x属于聚类i时,有 , 的其他项为零。k-均值聚类提供的one-hot编码也是一种稀疏表示,因为每个输入表示中大部分元素为零。...k-均值聚类初始化k个不同的中心点 ,然后迭代交换两个不同的步骤直到收敛。步骤一,每个训练样本分配到最近的中心点 所代表的的聚类i。...步骤二,每一个中心点 ,更新为聚类i中所有训练样本 的均值。关于聚类的一个问题是,聚类问题本事是病态的。这是说没有单一的标准去度量聚类数据在真实世界中效果如何。...我们可以度量聚类的性质,例如类中元素到类中心点的欧几里得距离的均值。这使得我们可以判断从聚类分配中重建训练数据的效果如何。然而我们不知道聚类的性质是否很好地对应到真实世界的性质。

1.8K10

Matlab函数kmeans:K-均值聚类

K-means聚类算法采用的是将N*P的矩阵X划分为K个类,使得类内对象之间的距离最大,而类之间的距离最小。...K 表示将X划分为几类,为整数 Idx N*1的向量,存储的是每个点的聚类标号 C K*P的矩阵,存储的是K个聚类质心位置 sumD 1*K的和向量,存储的是类间所有点与该类质心点距离之和...D N*K的矩阵,存储的是每个点与所有质心的距离 […]=Kmeans(…,'Param1',Val1,'Param2',Val2,…) 这其中的参数Param1、Param2等,主要可以设置为如下...‘Start’(初始质心位置选择方法) ‘sample’ 从X中随机选取K个质心点 ‘uniform’ 根据X的分布范围均匀的随机生成K个质心 ‘cluster’ 初始聚类阶段随机选择10%的X的子样本...‘Replicates’(聚类重复次数)  整数 使用案例: data= 5.0 3.5 1.3 0.3 -1 5.5 2.6 4.4 1.2 0 6.7 3.1 5.6 2.4 1

1.5K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【聚类算法】K-均值聚类(K-Means)算法

    一、K-均值聚类(K-Means)概述 1、聚类: “类”指的是具有相似性的集合,聚类是指将数据集划分为若干类,使得各个类之内的数据最为相似,而各个类之间的数据相似度差别尽可能的大。...聚类分析就是以相似性为基础,在一个聚类中的模式之间比不在同一个聚类中的模式之间具有更多的相似性。对数据集进行聚类划分,属于无监督学习。...2、K-Means: K-Means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有数值的均值得到的,每个类的中心用聚类中心来描述。...结合最小二乘法和拉格朗日原理,聚类中心为对应类别中各数据点的平均值,同时为了使算法收敛,在迭代的过程中,应使得最终的聚类中心尽可能的不变。...3、K-Means算法流程: 随机选取K个样本作为聚类中心; 计算各样本与各个聚类中心的距离; 将各样本回归于与之距离最近的聚类中心; 求各个类的样本的均值,作为新的聚类中心; 判定:若类中心不再发生变动或者达到迭代次数

    6.8K41

    机器学习-聚类算法-k-均值聚类-python详解

    1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好...另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚类你可能就会考虑分成三类(L,M,S)等 2.然后我们需要选择最初的聚类点(或者叫质心),这里的选择一般是随机选择的,代码中的是在数据范围内随机选择,...这里有两种处理方法,一种是多次取均值,另一种则是后面的改进算法(bisecting K-means) 3.终于我们开始进入正题了,接下来我们会把数据集中所有的点都计算下与这些质心的距离,把它们分到离它们质心最近的那一类中去...形成二维数组     ## step 2: 开始聚类...     print "step 2: clustering..."     ...原创文章,转载请注明: 转载自URl-team 本文链接地址: 机器学习-聚类算法-k-均值聚类-python详解 No related posts.

    1.1K30

    K-均值(K-means)聚类算法

    K-均值(K-means)聚类算法是一种常用的无监督学习算法,用于将数据集分成 K 个簇(clusters)。...该算法的基本思想是将数据点分为 K 个簇,使得每个数据点所属的簇内部的数据点之间的相似度最大化,而不同簇之间的相似度最小化。 K-均值聚类算法的步骤如下: 1....重复步骤 2 和步骤 3,直到簇中心不再发生变化或达到指定的迭代次数。 K-均值聚类算法的优点包括: 1. 简单易实现,计算速度快。 2. 在处理大型数据集时具有较高的效率。 3....K-均值聚类算法的缺点包括: 1. 需要事先确定簇的数量 K,这通常需要对数据有一定的了解。 2. 对于不规则形状、不均匀大小或密度不一致的簇效果可能不佳。 3....总的来说,K-均值聚类算法是一种简单且高效的聚类算法,适用于许多场景,但在一些特定情况下可能表现不佳。在使用该算法时,需要根据具体问题和数据集来选择合适的参数和预处理方式,以获得更好的聚类结果。

    9710

    【Spark Mllib】K-均值聚类——电影类型

    K-均值聚类 K-均值算法试图将一系列样本分割成K个不同的类簇(其中K是模型的输入参数),其形式化的目标函数称为类簇内的方差和(within cluster sum of squared errors...K-均值聚类的目的是最小化所有类簇中的方差之和。标准的K-均值算法初始化K个类中心(为每个类簇中所有样本的平均向量),后面的过程不断重复迭代下面两个步骤。...K-均值迭代算法结束条件为达到最大的迭代次数或者收敛。收敛意味着第一步类分配之后没有改变,因此WCSS的值也没有改变。 数据特征提取 这里我还是会使用之前分类模型的MovieLens数据集。...K-均值最小化的目标函数是样本到其类中心的欧拉距离之和,我们便可以将“最靠近类中心”定义为最小的欧拉距离。...不同于以往的模型,K-均值模型只有一个可以调的参数,就是K,即类中心数目。

    1.3K10

    算法金 | K-均值、层次、DBSCAN聚类方法解析

    ,将具有相似主题的文档分在一起,方便后续的信息检索和推荐系统K-均值聚类方法定义与基本原理K-均值(K-Means)是一种常见的划分式聚类算法,其目标是将数据集分成 ( K ) 个簇,使得每个簇内的数据点与该簇的中心点...肘部法则通过绘制不同 ( K ) 值对应的聚类误差平方和(SSE),选择拐点处的 ( K ) 值初始中心的选择对K-均值算法的收敛速度和聚类效果有重要影响。...( K ) 值不能处理非凸形状的簇和具有不同大小的簇对噪声和异常值敏感适用场景及实例K-均值聚类适用于以下场景:数据集规模较大,且簇的形状接近凸形需要快速获取聚类结果,用于初步数据分析希望对簇进行简单的解释和可视化更多内容...,需要识别并处理希望在不预先指定簇数的情况下进行聚类[ 抱个拳,总个结 ]聚类方法比较与应用三种聚类方法的比较在前面章节中,我们详细介绍了K-均值、层次聚类和DBSCAN这三种聚类方法。...如何选择适合的聚类方法在实际应用中,选择适合的聚类方法需要考虑以下因素:数据集规模:对于大规模数据集,优先选择计算复杂度较低的方法,如K-均值。

    60700

    Python中用K-均值聚类来探索顾客细分

    客户细分的核心是能够识别不同类型的客户,然后知道如何找到更多这样的人,这样你就可以…你猜对了,获得更多的客户!在这篇文章中,我将详细介绍您如何可以使用K-均值聚类来完成一些客户细分方面的探索。...K-均值快速入门 为了细分客户,我们需要一种方法来对它们进行比较。要做到这一点,我们将使用K-均值聚类。K-均值是一种获取一个数据集,并从中发现具有类似性质点的组合(或簇)的方法。...K-均值的工作原理是,最小化各个点与各簇中点之间的距离,并以此来进行分组。 想一个最简单的例子。如果我告诉你为下面这些点创建 3 个组,并在每个组的中间绘制一个星星,你会怎么做? ?...可能(或希望)是这样的… ? 在K-均值中,“ x ”的被称为“重心”,并指出(你猜对了),给定簇的中心。我不打算详细讲述K-均值实际上是怎什么样运作的,但希望这说明会给你一个不错的想法。...有关K-均值和客户细分的更多信息,请查看以下资源: INSEAD Analytics Cluster Analysis and Segmentation Post Customer Segmentation

    1.4K30

    【模式识别】探秘聚类奥秘:K-均值聚类算法解密与实战

    资源获取:关注文末公众号回复 模式识别实验 2 K-均值聚类 2.1 研究目的 理解K-均值聚类算法的核心原理,包括初始化、数据点分配和聚类中心更新。...通过选择挑战性数据集,实际应用K-均值聚类算法并分析不同K值对聚类效果的影响,以及聚类结果的可视化展示。...K-均值聚类的优点包括简单易实现、计算效率高,但也有一些缺点,例如对初始聚类中心的选择敏感,对异常值敏感等。在应用K-均值聚类时,通常需要对数据进行标准化,以确保不同特征的尺度不会影响聚类结果。...均值聚类算法,用于将一组数据点分成两个簇。...K-均值聚类算法主体函数: void C_mean(): 该函数实现了K-均值聚类的主要逻辑。初始化聚类中心,然后通过迭代过程不断更新聚类中心,直到聚类中心不再改变(收敛)为止。

    25510

    机器学习中的 K-均值聚类算法及其优缺点

    K-均值聚类算法是一种常见的无监督学习算法,用于将数据集分成 K 个不同的簇。它的目标是最小化数据点与各自质心的距离之和。下面是K-均值聚类算法的步骤: 选择要创建的簇的数量 K。...K-均值聚类算法的优点包括: 相对简单和易于实现,适用于大规模数据集。 对于凸形状的簇效果较好。 可以用于预处理数据,将数据点分成不同的簇,并用簇的质心代表簇进行进一步分析。...然而,K-均值聚类算法也有一些缺点: 需要提前指定簇的数量 K,这对于某些数据集可能不太容易确定。 对初始质心的选择敏感,不同的初始质心可能导致不同的结果。...对噪声和异常值敏感,可能会将它们分配到错误的簇中。 无法处理非凸形状的簇以及具有不同密度的簇。 综上所述,K-均值聚类算法是一种简单而有效的聚类算法,但在某些情况下可能存在一些局限性。...在实践中,可以使用其他聚类算法来克服一些 K-均值聚类算法的限制。

    18910

    机器学习(二)——K-均值聚类(K-means)算法

    ,言归正传,今天我和大家一起来学习K-均值聚类算法。...一 K-均值聚类(K-means)概述 1. 聚类 “类”指的是具有相似性的集合。聚类是指将数据集划分为若干类,使得类内之间的数据最为相似,各类之间的数据相似度差别尽可能大。...聚类分析就是以相似性为基础,对数据集进行聚类划分,属于无监督学习。 2. 无监督学习和监督学习 上一篇对KNN进行了验证,和KNN所不同,K-均值聚类属于无监督学习。...将类内之间数据的均值作为聚类中心,更新聚类中心。...= 0.53,表明误分率还是蛮大的,聚类效果并不是很理想,究其原因:虽然算法收敛,但算法只是收敛到了局部最小值,而并非全局最小值,所以可以引入二分K-均值对算法进行优化。

    97410

    机器学习(九)-------- 聚类(Clustering) K-均值算法 K-Means

    此后我们还将提到其他类型的非监督学习算法,它们可以为我们找到其他类型的结构或者其他的一些模式,而不只是簇。 K-均值是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据聚类成不同的组。...K-均值是一个迭代算法,假设我们想要将数据聚类成 n 个组,其方法为: 首先选择?个随机的点,称为聚类中心(cluster centroids); 对于数据集中的每一个数据,按照距离?...个中心点的距离,将其与距离最近的中心点关 联起来,与同一个中心点关联的所有点聚成一类。 计算每一个组的平均值,将该组所关联的中心点移动到平均值的位置。 重复步骤 2-4 直至中心点不再变化。...K-均值算法也可以很便利地用于将数据分为许多不同组,即使在没有非常明显区分的组 群的情况下也可以。...选 择的时候思考我们运用 K-均值算法聚类的动机是什么,然后选择能最好服务于该目的标聚 类数。 ? 我们可能会得到一条类似于这样的曲线。像一个人的肘部。

    69320

    讲解机器学习中的 K-均值聚类算法及其优缺点

    K-均值(K-means)聚类算法是一种常用的无监督机器学习算法,用于将一组未标记的数据集分为 K 个不同的类别或簇。 算法步骤如下: 选择要分成的簇的个数 K。...随机选择 K 个样本作为初始的簇中心点。 对于每个样本,计算其与每个簇中心点的距离,并将其分配给距离最近的簇。 更新每个簇的中心点为该簇中所有样本的平均值。...重复步骤 3 和步骤 4,直到簇中心点不再改变,或达到预定的迭代次数。 K-均值聚类算法的优点如下: 简单而直观,易于理解和实现。 可用于大规模数据集,计算效率高。 对于结构化和非结构化数据都适用。...K-均值聚类算法的缺点如下: 需要事先指定聚类的个数 K。 对于不同形状、大小、密度分布的聚类结果较差。 容易收敛到局部最优解,结果依赖于初始的簇中心点选择。 对噪声和异常值敏感。...为了克服 K-均值聚类算法的一些缺点,还有一些改进的方法,如谱聚类、层次聚类、密度聚类等。

    14010

    教程 | 如何为时间序列数据优化K-均值聚类速度?

    数据分析解决方案提供商 New Relic 在其博客上介绍了为时间序列数据优化 K-均值聚类速度的方法。机器之心对本文进行了编译介绍。...鉴于我们所收集的数据的量是如此巨大,更快的聚类时间至关重要。 加速 k-均值聚类 k-均值聚类是一种流行的分组数据的方法。...k-均值方法的基本原理涉及到确定每个数据点之间的距离并将它们分组成有意义的聚类。我们通常使用平面上的二维数据来演示这个过程。以超过二维的方式聚类当然是可行的,但可视化这种数据的过程会变得更为复杂。...在测试这些实现的过程中,我们注意到很多实现的表现水平都有严重的问题,但我们仍然可以演示加速 k-均值聚类的可能方法,在某些案例中甚至能实现一个数量级的速度提升。...然后我们向随机长度的正弦波添加噪声。尽管这一类数据对 k-均值聚类方法而言并不理想,但它足以完成未优化的实现。

    1.1K100

    spss k均值聚类_K均值法与系统聚类法的异同

    总目录:SPSS学习整理 SPSS实现快速聚类(K-Means/K-均值聚类) 目的 适用情景 数据处理 SPSS操作 SPSS输出结果分析 知识点 ---- 目的 利用K均值聚类对数据快速分类...适用情景 数据处理 SPSS操作 分析——分类——K-均值聚类 最大迭代次数根据数据量,分类数量,电脑情况自己调整,能选多点就把上限调高点。...最终个三个聚类中心以及他们之间的距离 两个变量的显著性都小于0.05,说明这两个变量能够很好的区分各类 显示每个类有多少个案 由于只有两个维度,可以很好的用Tableau展示分类效果...,这张图为原始数据散点图,横轴:当前薪资;竖轴:初始薪资 将分类好后的数据组QCL_1(个案分类编号)进行着色,得到上图,可以观察到Tableau很好得把数据分成了三类。...注意:K-均值聚类可能陷入局部最优解,产生原因和解决办法可以百度 知识点 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

    99330

    【机器学习实战】第10章 K-Means(K-均值)聚类算法

    第 10章K-Means(K-均值)聚类算法 K-Means 算法 聚类是一种无监督的学习, 它将相似的对象归到一个簇中, 将不相似对象归到不同簇中....K-Means 是发现给定数据集的 K 个簇的聚类算法, 之所以称之为 K-均值 是因为它可以发现 K 个不同的簇, 且每个簇的中心采用簇中所含值的均值计算而成....簇个数 K 是用户指定的, 每一个簇通过其质心(centroid), 即簇中所有点的中心来描述. 聚类与分类算法的最大区别在于, 分类的目标类别已知, 而聚类的目标类别是未知的....例如: 对地图上的点进行聚类. K-Means 术语 簇: 所有数据点点集合,簇中的对象是相似的。 质心: 簇中所有点的中心(计算所有点的均值而来)....局部最小值的的情况如下: 所以为了克服 KMeans 算法收敛于局部最小值的问题,有更厉害的大佬提出了另一个称之为二分K-均值(bisecting K-Means)的算法.

    1.6K80

    从零开始的K均值聚类

    研究结果表明,欧几里得距离是计算K均值聚类算法中数据点之间距离的最佳方法。 K均值聚类算法概述 K均值聚类是一种流行的无监督聚类机器学习算法之一。让我们解释一下它是如何工作的。...步骤4:计算每个聚类的均值,并将新的质心重新居中到均值位置。 图像描述了将质心居中到根据均值计算的新位置。 步骤5:重复步骤3和步骤4,直到质心收敛。 重复步骤3和步骤4后,我们得到了上面的聚类。...K均值的最佳聚类数 对于K均值聚类算法来说,选择最佳聚类数是一个重要问题。如果你不知道最佳聚类数,你应该应用“肘部法”来找出它。为了保持文章的精确和适度,我将简要解释这种方法。...为什么选择K均值? K均值是最流行的聚类算法。它是一种简单的聚类算法,在大型数据集上表现良好。相对而言,它比其他聚类算法更快。它始终保证收敛到最终的聚类,并且很容易适应新的数据点[3]。...K均值的挑战 在前面的部分中,我们看到K均值聚类算法中初始聚类质心是随机分配的,导致了随机迭代和执行时间。因此,在算法中选择初始质心点是一个关键问题。

    14910

    K-Means(K 均值),聚类均值漂移聚类,基于密度的聚类方法,DBSCAN 聚类,K-Means 的两个失败案例,使用 GMMs 的 EM 聚类,凝聚层次聚类

    K-Medians 是与 K-Means 有关的另一个聚类算法,除了不是用均值而是用组的中值向量来重新计算组中心。...然后,在后处理阶段对这些候选窗口进行过滤以消除近似重复,形成最终的中心点集及其相应的组。请看下面的图例。 均值漂移聚类用于单个滑动窗口 为了解释均值漂移,我们将考虑二维空间中的一组点,如上图所示。...DBSCAN 与其他聚类算法相比有很多优点。首先,它根本不需要固定数量的簇。它也会将异常值识别为噪声,而不像均值漂移,即使数据点非常不同,也会简单地将它们分入簇中。...另外,它能够很好地找到任意大小和任意形状的簇。 DBSCAN 的主要缺点是当簇的密度不同时,它的表现不如其他聚类算法。...下面是其 Python 解释: 通过以上公式可以计算图的模块性,且模块性越高,该网络聚类成不同团体的程度就越好。因此通过最优化方法寻找最大模块性就能发现聚类该网络的最佳方法。

    22910
    领券