首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

TensorFlow 2.0入门

,如训练,验证和测试。...由于tf_flowers没有定义任何标准分割,使用subsplit功能将其分别用于80%,10%,10%的数据进行训练,验证和测试。使用tfds.load()函数来下载数据集。...需要将所有图像的大小调整为给定的高度和宽度,并将像素值标准化为0到1之间的范围。这样做是因为为了训练卷积神经网络,必须指定输入维度。最终致密层的形状取决于CNN的输入尺寸。...,使用8:1:1的subsplit比率来计算列车,验证和测试分割中的示例数量。...训练分类负责预训练网络后的训练和验证指标 可以看到验证是准确性略高于训练准确性。这是一个好兆头,因为可以得出结论,模型在看不见的数据(验证集)上表现良好。可以通过使用测试集来评估模型来确认这一点。

1.8K30

Deep learning with Python 学习笔记(1)

4 个这样的视频片段组成的批量将保存在形状为 (4, 240, 144, 256, 3)的张量中 如果将两个形状不同的张量相加,较小的张量会被广播(broadcast),以匹配较大张量的形状: 向较小的张量添加轴...使用 IMDB 数据集,数据集被分为用于训练的 25 000 条评论与用于测试的 25 000 条评论,训练集和测试集都包含 50% 的正面评论和 50% 的负面评论 其中,数据集中的labels...: 训练集用来训练网络中的参数,验证集用来调节网络超参数,测试集用来测试网络性能,需要注意的是我们不应该使用模型读取任何测试集相关的信息然后依此来调节模型 如果可用的数据相对较少,而你又需要尽可能精确地评估模型...时间箭头 当数据包含数据信息时,应该始终确保测试集中所有数据的时间都晚于训练集数据 数据冗余 当存在数据冗余时,打乱数据可能会造成训练集和验证集出现重复的数据,而我们要确保训练集和验证集之间没有交集...机器学习的目的当然是得到良好的泛化 训练开始时,优化和泛化是相关的: 训练数据上的损失越小,测试数据上的损失也越小。

1.4K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    盘一盘 Python 系列 10 - Keras (上)

    每幅帧就是彩色图像,可以存储在形状是 (宽度,高度,通道) 的 3D 张量中 视屏 (一个序列的帧) 可以存储在形状是 (帧数,宽度,高度,通道) 的 4D 张量中 一批不同的视频可以存储在形状是 (样本数...它是由Zalando(一家德国的时尚科技公司)旗下的研究部门提供。 ? Fashion-MNIST 的大小、格式和训练集/测试集划分与原始的 MNIST 完全一致。...60000/10000 的训练测试数据划分,28x28 的灰度图片。 打印它们的形状确认一下。...不同数据格式或不同数据处理类型需要用到不同的层,比如 形状为 (样本数,特征数) 的 2D 数据用全连接层,对应 Keras 里面的 Dense 形状为 (样本数,步长,特征数) 的 3D 序列数据用循环层...训练精度 90.17% 但是测试精度 87.73%,有过拟合的征兆。这是需要用验证集了。 验证集 我们将原来训练集前 5000 个当验证集,剩下了当训练集。 ?

    1.8K10

    Keras可视化神经网络架构的4种方法

    我们在使用卷积神经网络或递归神经网络或其他变体时,通常都希望对模型的架构可以进行可视化的查看,因为这样我们可以 在定义和训练多个模型时,比较不同的层以及它们放置的顺序对结果的影响。...还有可以更好地理解模型结构、激活函数、模型参数形状(神经元数量)等 keras 中有一些现成的包可以创建我们的神经网络模型的可视化表示。...前三个包可以在模型训练之前使用(只需要定义和编译模型);但是Tensor Boards 要求用户在架构可视化之前根据准确的数据训练模型。...我们创建了用户定义的函数来分别构建具有不同数量的 CNN 层、池化层和最后的密集层的三个不同模型。...: model: Keras编译后的模型或模型对象的实例 to_file:保存的文件名 Show_shapes:显示神经网络中每一层的尺寸和形状 show_layer_activation:显示神经元内部使用的激活函数

    86111

    Keras入门级MNIST手写数字识别超级详细教程

    表现最好的模型是深度学习卷积神经网络,其分类准确率超过 99%,在保持测试数据集上的错误率在 0.4% 到 0.2% 之间。...下面的示例使用 Keras API 加载 MNIST 数据集,并创建训练数据集中前九张图像的图。 运行示例加载 MNIST 训练和测试数据集并打印它们的形状。...为 Keras 预处理类标签。 定义模型架构。 编译模型。 在训练数据上拟合模型。 根据测试数据评估模型。 第 1 步:设置您的环境。...接下来,让我们看看我们的类标签数据的形状: print(y_train.shape) (60000,) 我们应该有 10 个不同的类,每个数字一个,但看起来我们只有一个一维数组。...y_train 和 y_test 数据没有分成 10 个不同的类标签,而是表示为具有类值的单个数组。

    6.6K00

    Keras入门级MNIST手写数字识别超级详细教程

    表现最好的模型是深度学习卷积神经网络,其分类准确率超过 99%,在保持测试数据集上的错误率在 0.4% 到 0.2% 之间。...下面的示例使用 Keras API 加载 MNIST 数据集,并创建训练数据集中前九张图像的图。 运行示例加载 MNIST 训练和测试数据集并打印它们的形状。...最后,最后一层可以将图像分类为猫或袋鼠。 这些类型的深度神经网络称为 卷积神经网络。 以下是使用 Keras 构建您的第一个 CNN 的步骤: 设置您的环境。 安装 Keras。 导入库和模块。...接下来,让我们看看我们的类标签数据的形状: print(y_train.shape) (60000,) 我们应该有 10 个不同的类,每个数字一个,但看起来我们只有一个一维数组。...y_train 和 y_test 数据没有分成 10 个不同的类标签,而是表示为具有类值的单个数组。

    98610

    在TensorFlow 2中实现完全卷积网络(FCN)

    用于图像分类和对象检测任务的预训练模型通常在固定的输入图像尺寸上训练。这些通常从224x224x3到某个范围变化,512x512x3并且大多数具有1的长宽比,即图像的宽度和高度相等。...测试FCN模型的一些有趣的数据集可能来自医学成像领域,其中包含对图像分类至关重要的微观特征,而其他数据集包含的几何图案/形状在调整图像大小后可能会失真。...给定批次和批次之间的每个图像都有不同的尺寸。所以有什么问题?退后一步,回顾一下如何训练传统的图像分类器。...这是因为如果有一个10张图像的列表,(height, width, 3)它们的height和值不同,width并且尝试将其传递给np.array(),则结果数组的形状将为(10,)and not (10...该模型会自动学习忽略零(基本上是黑色像素),并从填充图像的预期部分学习特征。这样就有了一个具有相等图像尺寸的批处理,但是每个批处理具有不同的形状(由于批处理中图像的最大高度和宽度不同)。

    5.2K31

    硬货 | 手把手带你构建视频分类模型(附Python演练))

    我们可以说视频是按特定顺序排列的一组图像的集合。这些图像也称为帧。 这就是为什么视频分类问题与图像分类问题没有什么不同。...让我总结一下我们将构建视频分类模型的步骤: 浏览数据集并创建训练和验证集。...由于组内的视频都是来自一个较长的视频,所以在训练集和测试集上共享来自同一组的视频可以获得较高的性能。" 因此,我们将按照官方文档中的建议将数据集拆分为训练和测试集。...接下来,我们将添加每个视频的标签(用于训练和测试集)。你是否注意到视频名称中"/"之前的整个部分代表了视频的标签?...现在是时候训练我们的模型,我们将用它来预测测试集中视频的标签。 训练视频分类模型 现在是时候训练我们的视频分类模型了!我确信这是本教程中最受期待的部分。

    5.1K20

    TensorFlow2 keras深度学习:MLP,CNN,RNN

    鉴于学习算法的随机性,您的具体结果会有所不同。尝试运行该示例几次。 在这种情况下,我们可以看到该模型实现了约94%的分类准确度,然后预测单行数据属于1类的概率为0.9。...鉴于学习算法的随机性,您的具体结果会有所不同。尝试运行该示例几次。 在这种情况下,我们可以看到该模型实现了约98%的分类精度,然后预测了属于每个类别的一行数据的概率,尽管类别0的概率最高。...首先,报告每个图像的形状以及类别数;我们可以看到每个图像都是28×28像素,并且我们有10个类别。 在这种情况下,我们可以看到该模型在测试数据集上实现了约98%的分类精度。...鉴于学习算法的随机性,您的具体结果会有所不同。尝试运行该示例几次。 在这种情况下,模型的MAE约为2,800,并从测试集中预测序列中的下一个值为13,199,其中预期值为14,577(非常接近)。...这是用于检查模型中输出形状和参数(权重)数量的诊断。

    2.2K30

    TensorFlow 2keras开发深度学习模型实例:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)

    鉴于学习算法的随机性,您的具体结果会有所不同。尝试运行该示例几次。 在这种情况下,我们可以看到该模型实现了约94%的分类准确度,然后预测单行数据属于1类的概率为0.9。...鉴于学习算法的随机性,您的具体结果会有所不同。尝试运行该示例几次。 在这种情况下,我们可以看到该模型实现了约98%的分类精度,然后预测了属于每个类别的一行数据的概率,尽管类别0的概率最高。...首先,报告每个图像的形状以及类别数;我们可以看到每个图像都是28×28像素,并且我们有10个类别。 在这种情况下,我们可以看到该模型在测试数据集上实现了约98%的分类精度。...鉴于学习算法的随机性,您的具体结果会有所不同。尝试运行该示例几次。 在这种情况下,模型的MAE约为2,800,并从测试集中预测序列中的下一个值为13,199,其中预期值为14,577(非常接近)。...这是用于检查模型中输出形状和参数(权重)数量的诊断。

    2.3K10

    使用Python实现深度学习模型:智能垃圾分类与回收系统

    介绍智能垃圾分类与回收系统通过深度学习技术,可以自动识别和分类不同类型的垃圾,提高垃圾回收效率,减少环境污染。本文将介绍如何使用Python和深度学习技术来实现智能垃圾分类与回收系统。...编译模型model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])数据分割将数据分为训练集和测试集...以下是一些具体的应用场景:智能垃圾桶:通过内置摄像头和深度学习模型,自动识别和分类垃圾,提高垃圾分类的准确性和效率。...垃圾回收站:在垃圾回收站中使用智能分类系统,自动分类和处理不同类型的垃圾,减少人工成本。环境教育:通过智能垃圾分类系统,向公众宣传垃圾分类的重要性,提高环保意识。...总结通过以上步骤,我们实现了一个简单的深度学习模型,用于智能垃圾分类与回收系统。你可以尝试使用不同的模型结构和参数来提高分类性能。希望这个教程对你有所帮助!

    33710

    Python 深度学习第二版(GPT 重译)(三)

    有不同的构建 Keras 模型的方式,以及不同的训练方式,满足不同的需求。...7.3 使用内置的训练和评估循环 逐步披露复杂性的原则——从非常简单到任意灵活的工作流程的访问,一步一步——也适用于模型训练。Keras 为您提供了不同的训练模型的工作流程。...用于分类和回归的常用指标已经是内置的 keras.metrics 模块的一部分,大多数情况下您会使用它们。但是,如果您正在做一些与众不同的事情,您将需要能够编写自己的指标。这很简单!...现在我们有 2,000 张训练图片,1,000 张验证图片和 2,000 张测试图片。每个拆分包含每个类别相同数量的样本:这是一个平衡的二元分类问题,这意味着分类准确率将是一个适当的成功衡量标准。...ImageNet 包含许多动物类别,包括不同品种的猫和狗,因此您可以期望它在狗与猫的分类问题上表现良好。

    32410

    三千字轻松入门TensorFlow 2

    分为训练集和测试集 要将数据分为训练集和测试集,我们可以使用 先前导入的sklearn.model_selection中 的 train_test_split。 ?...深度学习模型 现在终于可以开始创建模型并对其进行训练了。我们将从简单的模型开始,然后进入复杂的模型结构,其中将介绍Keras中的不同技巧和技术。 让我们编写基本模型 ?...因此,我们传递了任何训练示例的形状,在我们的例子中,它是 (4,) 在input_shape内部 。 注意,我们在输出层中使用了 softmax 激活函数,因为它是一个多类分类问题。...现在,当我们定义了模型的形状时,下一步就是指定它的 损失, 优化器和 指标。我们在Keras中使用compile 方法指定这些 。 ?...指标对于评估一个人的模型很重要。我们可以基于不同的指标来评估模型。对于分类问题,最重要的指标是准确性,它表明我们的预测有多准确。 我们模型的最后一步是将其拟合训练数据和训练标签。让我们编写代码。 ?

    55430

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第10章 使用Keras搭建人工神经网络

    例如,你可以使用单一 TLU,基于花瓣长度和宽度分类鸢尾花(也可添加额外的偏置特征x0=1,就像我们在前面章节所做的那样)。训练 TLU 意味着去寻找合适的W0、W1和W2值(训练算法稍后提到)。...图10-5展示了一个具有两个输入和三个输出的感知机,它可以将实例同时分成为三个不同的二元类,这使它成为一个多输出分类器。。 ?...看下训练集的形状和类型: >>> X_train_full.shape (60000, 28, 28) >>> X_train_full.dtype dtype('uint8') 该数据集已经分成了训练集和测试集...optimizer="sgd"不同,它的学习率默认为lr=0.01。 最后,因为是个分类器,最好在训练和评估时测量"accuracy"。 训练和评估模型 可以训练模型了。...回答以下问题: 输入矩阵X的形状是什么? 隐藏层的权重矢量Wh和偏置项bh的形状是什么? 输出层的权重矢量Wo和偏置项bo的形状是什么? 输出矩阵Y的形状是什么?

    3.3K30

    神经网络入手学习

    神经网络入手[上] [x] 神经网络的核心部分 [x] Keras介绍 [ ] 使用Keras解决简单问题:分类和回归 神经网络剖析 神经网络的训练与下列对象相关: 网络层Layers,网络层结合形成神经网络模型...不同的网络进行的数据处理各不相同,因此需要的数据格式及数据类型也有所差异。...在Keras框架中通过把相互兼容的网络层堆叠形成数据处理过程,而网络层的兼容性是指该网络层接收特定形状的输入张量同时返回特东形状的输出张量。...只有在面对真正要解决的科学问题时,才能决定要使用的损失函数类型以及定义。 Keras 介绍 Keras是一个Python语言的深度学习框架,提供了快速搞笑的深度学习网络模型定义和训练方法。...Keras开发 Keras工作流大致如下: 定义训练数据:输入张量和目标张量; 定义网络层(或网络模型):由输入张量处理得到输出张量; 配置训练过程--选择损失函数、优化算法以及监测指标; 通过调用模型的

    1.1K20

    让你的电脑拥有“视力”,用卷积神经网络就可以!

    我们的大脑就像一台自然进化了数百万年的超级电脑。在识别不同的模式和物体上,我们已经变得十分在行。 许多技术都是基于自然机制的。...我们需要添加更多形状。 ? 来自计算机视觉专家李飞飞的TED演讲的更多猫形状。 到目前为止,应该很清楚,直接告诉计算机寻找某些形状是行不通的。猫有各种形状和大小。...我们可以在Python里使用Keras框架创建一个卷积神经网络,其中Keras是一个用Python编写的高级API。Keras可以帮助我们编写易于理解和可读性强的代码。...我们将在MNIST数据集上进行实验,这个数据集是Keras库的一部分。它包含60,000个手写数字的训练样本和10,000个测试样本。让我们开始吧! ?...导入数据集后,我们需要将其拆分为训练数据和测试数据。训练数据是我们要用神经网络进行学习的。测试数据是我们将用来衡量准确度的。我们将调整数据以匹配TensorFlow后端所需的格式。

    64930

    多层感知器MLP模型介绍及训练示例

    输出层:产生最终输出,根据任务的不同(例如分类或回归),输出层可能有不同的设计。 工作原理 1. 前向传播:输入数据通过网络从输入层传递到输出层,在每一层中,数据都被转换为新的表示形式。 2....训练MLP模型 训练一个多层感知器(MLP)模型涉及几个关键步骤。下面是一个使用Python和Keras(基于TensorFlow)的简单示例,来说明如何训练一个基本的MLP模型。...这里我们还将对数据进行标准化处理: # 假设 X 是一个 (n_samples, n_features) 形状的数组,y 是一个 (n_samples,) 形状的数组 # 这里我们使用随机生成的数据作为示例...# 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42...构建并训练一个简单的MLP模型来进行二分类任务。

    38410

    基于 Keras 和 dlib 的人脸识别实践

    利用dlib截取自己的图片和别人的图片 参考写个神经网络,让她认得我(๑•ᴗ•๑),参考里面的代码截取了200张自己的图片和200张别人的图片,截取的图片宽高为64*64....训练集和验证集划分 训练集:分别取自己和别人前160张图片作为训练集 验证集:分别取自己和别人后40张图片作为验证集 2....数据预处理 转换图片形状 将输入的图片的形状转换为符合(None, width, height, channels)的形状,None是为batch_size预留的参数。...搭建并训练CNN模型 from keras.models import Sequential from keras.layers import Dropout, Flatten, Dense, Conv2D...# 给出输入属于各个类别的概率,这里是二元分类,则该函数会给出输入图像属于0和1的概率各为多少 # result = model.predict(image) # print

    1.1K10
    领券