首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

多维度预测,基于keras预测房价操作

https://www.kaggle.com/c/boston-housing from keras.datasets import boston_housing (train_data,train_targets...from keras import models from keras import layers def build_model(): model = models.Sequential()...model.add(layers.Dense(64, activation='relu',input_shape=(train_data.shape[1],))) model.add...使用激活函数将会限制输出结果的范围,比如使用sigmoid激活函数,输出结果在0~1之间。这里,因为最后一层只是一个线性层,模型的输出结果可能是任意值。 模型的损失函数为mse均方误差。...最好的评估方式是采用K折交叉验证–将数据集分成K份(K=4或5),实例化K个模型,每个模型在K-1份数据上进行训练,在1份数据上进行评估,最后用K次评估分数的平均值做最后的评估结果。

59630
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    回顾——keras电影评价预测

    学习一时爽,一直学习一直爽 回顾以前的笔记 (于3月份记录的) 在keras中,内置了imdb电影评分数据集,来进行评价预测 安装keras conda install keras conda就帮依赖全部搞定...而是单词的索引 一共就5万句子 import keras from keras import layers import matplotlib.pyplot as plt %matplotlib inline...0, 0, ..., 0, 1, 0], dtype=int64) 1 代表 正面评价 0 代表负面怕评价 加载index和词汇的对应关系 #加载词汇 word_index = data.get_word_index...每条评论的单词量为这么多 9999 果然最长的不超过10000 文本的向量化(下次用pad_sequences) # 将x_train 中的25000条评论 25000*10000的矩阵 # 该词出现为1...result = np.zeros((len(seqs), dim)) for i, seq in enumerate(seqs): result[i, seq] = 1

    67730

    Keras 实现 LSTM时间序列预测

    本文将介绍如何用 keras 深度学习的框架搭建 LSTM 模型对时间序列做预测。 1 项目简单介绍 1.1 背景介绍 本项目的目标是建立内部与外部特征结合的多时序协同预测系统。...1.2 数据集说明 ** 训练数据有8列:** - 日期 - 年: int - 日期 - 月: int - 日期 - 日: int, 时间跨度为2015年2月1日 - 2016年8月31日 - 当日最高气温...- 摄氏度(下同): float - 当日最低气温: float - 当日平均气温: float - 当日平均湿度: float - 输出 - float 预测数据没有输出部分,其他与预测一样。...时间跨度为2016年9月1日 - 2016年11月30日 训练与预测都各自包含46组数据,每组数据代表不同数据源,组之间的温度与湿度信息一样而输出不同. 2 导入库并读取查看数据 ? ? ? ?...5 模型预测并可视化 ? ? 蓝色曲线为真实输出 绿色曲线为训练数据的预测输出 黄色曲线为验证数据集的预测输出 红色曲线为测试数据的预测输出(能看出来模型预测效果还是比较好的)

    2.4K12

    使用LSTM模型预测股价基于Keras

    , 1)) 构建LSTM 我们需要导入Keras的一些模型来构建LSTM 1、顺序初始化神经网络 2、添加一个紧密连接的神经网络层 3、添加长短时记忆层(LSTM) 4、添加dropout层防止过拟合...from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from...keras.layers import Dropout 为了防止过拟合,我们添加了LSTM层和Dropout层,其中LSTM层的参数如下: 1、50 units 表示输出空间是50维度的单位 2、return_sequences...1:2].values 为了预测未来的股票价格,我们需要在测试集加载后做如下几个工作: 1、在0轴上合并训练集和测试集 2、将时间步长设置为60(如前面所介绍的) 3、使用MinMaxScaler函数转换新数据集...结论 预测股价的方法还有很多,比如移动平均线、线性回归、k近邻、ARIMA和Prophet。读者可以自行测试这些方法的准确率,并与Keras LSTM的测试结果进行比较。

    4.1K20

    基于keras的波士顿房价预测

    https://www.kaggle.com/c/boston-housing from keras.datasets import boston_housing (train_data,train_targets...from keras import models from keras import layers def build_model(): model = models.Sequential()...model.add(layers.Dense(64, activation='relu',input_shape=(train_data.shape[1],))) model.add...使用激活函数将会限制输出结果的范围,比如使用sigmoid激活函数,输出结果在0~1之间。这里,因为最后一层只是一个线性层,模型的输出结果可能是任意值。 模型的损失函数为mse均方误差。...最好的评估方式是采用K折交叉验证–将数据集分成K份(K=4或5),实例化K个模型,每个模型在K-1份数据上进行训练,在1份数据上进行评估,最后用K次评估分数的平均值做最后的评估结果。

    71440

    【时空序列预测实战】风险时空预测?keras之ConvLSTM实战来搞定

    我的本科毕设大概是这样的:先计算某个区域的风险,计算得到一段时间的风险矩阵,这里用的是自己的模型去计算的,数据如何生成,本文不做赘述,主要讲解如果通过每个时刻下的矩阵数据去预测未来的矩阵。 1....官方keras案例 实战过的朋友应该了解,关于Convlstm,可参考的案例非常少,基本上就集中在keras的官方案例(电影帧预测——视频预测 [官方案例] https://keras.io...和(样本数,40,40,1),也就是20个预测1个。...3.预测图片出现模糊大概有以下几个原因: (1)网络结构不够优(继续调就完事了),往往这种情况下,得到的预测点也不会太准确。...模型调参的过程其实是最无聊也最艰辛的,无非就是改改层结构,多一层少一层,改一下filter、batchsize个数,时空预测这种图像的预测和别的领域有一点不同,文本的只要acc、f1-score上去了就行

    2.8K30

    深度学习在医疗保健领域的应用:从图像识别到疾病预测

    文章目录 深度学习在医学影像识别中的应用 1. 癌症检测 2. 病理学图像分析 3. 医学图像分割 深度学习在疾病预测中的应用 1. 疾病风险预测 2. 疾病诊断辅助 3....药物研发 深度学习在个性化治疗中的应用 1. 基因组学分析 2....') # 对CT扫描图像进行预测 image = load_and_preprocess_image('ct_scan.png') prediction = model.predict(image)...以下是一些示例: 1. 疾病风险预测 深度学习模型可以利用患者的临床数据和生物标志物信息来预测他们患某种疾病的风险。这些模型可以帮助医生识别高风险患者,提供更早的干预和治疗。...# 代码示例:使用深度学习进行疾病风险预测 import tensorflow as tf # 加载已经训练好的疾病风险预测模型 model = tf.keras.models.load_model(

    64010

    预测金融时间序列——Keras 中的 MLP 模型

    period1=1104534000&period2=1491775200&interval=1d&filter=history&frequency=1d)。 让我们加载这些数据,看看是什么样子。...让我们把Keras作为一个实现框架——它非常简单、直观,你可以用它来实现相当复杂的计算图,但到目前为止我们还不需要它。...预测金融时间序列 - 分类问题 让我们训练我们的第一个模型并查看图表: 可以看到,测试样本的准确率一直保持在±1值的误差,训练样本的误差下降,准确率增加,说明过拟合了。...我们将从最常见的方式开始——在权重总和的L2 范数中向误差函数添加一个附加项,在Keras 中, 这是使用 keras.regularizers.activity_regularizer 完成的。...此外,在这种情况下,我们不仅可以查看误差值,还可以使用以下代码直观地评估预测质量: pred = model.predict(np.array(X_test)) original = Y_test predicted

    5.4K51

    教你预测北京雾霾,基于keras LSTMs的多变量时间序列预测

    这在时间预测问题中非常有用,而经典线性方法难以应对多变量预测问题。 本文讲解了如何在Keras深度学习库中,为多变量时间序列预测开发LSTM模型。...包含三块内容: 如何将原始数据集转换为可用于时间序列预测的数据集; 如何准备数据,并使LSTM模型适用于多变量时间序列预测问题; 如何做预测,并将预测的结果重新调整为原始数据单位。...且需安装scikit-learn、Numpy、Pandas、Matplotlib、 Scipy、Keras(2.0或更高版本)、TensorFlow或Theano backend等依赖包。...from sklearn.metrics import mean_squared_error from keras.models import Sequential from keras.layers...from numpy import concatenate from keras.layers import LSTM from math import sqrt # 开始预测 yhat = model.predict

    1.2K31

    教程 | 基于Keras的LSTM多变量时间序列预测

    本文介绍了如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。 诸如长短期记忆(LSTM)循环神经网络的神经神经网络几乎可以无缝建模具备多个输入变量的问题。...这为时间序列预测带来极大益处,因为经典线性方法难以适应多变量或多输入预测问题。 通过本教程,你将学会如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。...之后,删除要预测的时刻(t)的天气变量。 完整的代码列表如下。 ? 运行上例打印转换后的数据集的前 5 行。我们可以看到 8 个输入变量(输入序列)和 1 个输出变量(当前的污染水平)。 ?...这个数据准备过程很简单,我们可以深入了解更多相关知识,包括: 对风速进行一位有效编码 用差值和季节性调整使所有序列数据恒定 提供超过 1 小时的输入时间步长 最后也可能是最重要的一点,在学习序列预测问题时...我们将在第一个隐藏层中定义具有 50 个神经元的 LSTM,在输出层中定义 1 个用于预测污染的神经元。输入数据维度将是 1 个具有 8 个特征的时间步长。

    3.9K80

    用Keras+TensorFlow,实现ImageNet数据集日常对象的识别

    Keras和TensorFlow Keras是一个高级神经网络库,能够作为一种简单好用的抽象层,接入到数值计算库TensorFlow中。...http://i.imgur.com/wpxMwsR.jpg 输入: 输出将如下所示: △ 该图像最可能的前3种预测类别及其相应概率 预测功能 我们接下来要载入ResNet50网络模型。...np.expand_dims:将我们的(3,224,224)大小的图像转换为(1,3,224,224)。因为model.predict函数需要4维数组作为输入,其中第4维为每批预测图像的数量。...这是非常重要的步骤,如果跳过,将大大影响实际预测效果。这个步骤称为数据归一化。 model.predict:对我们的数据分批处理并返回预测值。...decode_predictions:采用与model.predict函数相同的编码标签,并从ImageNet ILSVRC集返回可读的标签。

    2K80

    AI辅助的运维风险预测:智能运维新时代

    AI(人工智能)在运维中的应用,尤其是在风险预测领域,正在成为企业降本增效、提升稳定性的关键手段。本文将深入探讨 AI 如何辅助运维风险预测,并通过代码示例展示其实际应用。1....predictions = model.predict(X_test)print(f'预测准确率: {accuracy_score(y_test, predictions):.2f}')通过这种方式,我们可以基于历史数据构建预测模型...log_data = np.random.rand(1000, 10) # 10 维特征# 构建 AutoEncoderinput_dim = log_data.shape[1]model = keras.Sequential...='relu'), keras.layers.Dense(6, activation='relu'), keras.layers.Dense(input_dim, activation='sigmoid...loss='mse')model.fit(log_data, log_data, epochs=50, batch_size=32, verbose=0)# 计算重构误差reconstructed = model.predict

    8400

    Keras中带LSTM的多变量时间序列预测

    这在时间序列预测中是一个很大的好处,经典的线性方法很难适应多元或多输入预测问题。 在本教程中,您将了解如何在Keras深度学习库中开发用于多变量时间序列预测的LSTM模型。...# 作出预测 yhat = model.predict(test_X) test_X = test_X.reshape((test_X.shape[0], test_X.shape[2])) # 反向缩放预测值...yhat = model.predict(test_X) test_X = test_X.reshape((test_X.shape[0], test_X.shape[2])) # 反向转换预测值比例...yhat = model.predict(test_X) test_X = test_X.reshape((test_X.shape[0], n_hours*n_features)) # 反向转换预测值比例...北京PM2.5数据集在UCI机器学习库 Keras中长期短期记忆模型的5步生命周期 Python中的长时间短时记忆网络的时间序列预测 Python中的长期短期记忆网络的多步时间序列预测 概要 在本教程中

    46.4K149

    如何使用Keras集成多个卷积网络并实现共同预测

    在统计学和机器学习领域,集成方法(ensemble method)使用多种学习算法以获得更好的预测性能(相比单独使用其中任何一种算法)。...GitHub 地址:https://github.com/LawnboyMax/keras_ensemblng 使用集成的主要动机是在发现新的假设,该假设不一定存在于构成模型的假设空间中。...我将使用 Keras,具体来说是它的功能性 API,以从相对知名的论文中重建三种小型 CNN(相较于 ResNet50、Inception 等而言)。...堆叠涉及训练一个学习算法结合多种其它学习算法的预测 [1]。对于这个示例,我将使用堆叠的最简单的一种形式,其中涉及对集成的模型输出取平均值。...相较于在 MLP 卷积层中使用多层感知机,我使用的是 1x1 卷积核的卷积层。

    1.4K90
    领券